Centers for Disease Control and Prevention (CDC). Long COVID or Post-COVID Conditions https://www.cdc.gov/coronavirus/2019-ncov/long-term-effects/index.html (2022).
Soriano, J. B. et al. A clinical case definition of post-COVID-19 condition by a Delphi consensus. Lancet Infect. Dis. 22, e102–e107 (2022).
Google Scholar
Elizalde-Díaz, J. P., Miranda-Narváez, C. L., Martínez-Lazcano, J. C. & Martínez-Martínez, E. The relationship between chronic immune response and neurodegenerative damage in long COVID-19. Front. Immunol. 13, 1039427 (2022).
Google Scholar
de Paula, J. J. et al. Selective visuoconstructional impairment following mild COVID-19 with inflammatory and neuroimaging correlation findings. Mol. Psychiatry. 28, 553–563 (2023).
Google Scholar
Zhang, X. et al. Overview of the complex figure test and its clinical application in neuropsychiatric disorders, including copying and recall. Front. Neurol. 12, 680474 (2021).
Google Scholar
Davies, S. R., Field, A. R. J., Andersen, T. & Pestell, C. The ecological validity of the Rey-Osterrieth Complex figure: predicting everyday problems in children with neuropsychological disorders. J. Clin. Exp. Neuropsychol. 33, 820–831 (2011).
Google Scholar
Kravitz, D. J., Saleem, K. S., Baker, C. I. & Mishkin, M. A new neural framework for visuospatial processing. Nat. Rev. Neurosci. 12, 217–230 (2011).
Google Scholar
Thomson, C. A., McColl, A., Cavanagh, J. & Graham, G. J. Peripheral inflammation is associated with remote global gene expression changes in the brain. J. Neuroinflammation. 11, 73 (2014).
Google Scholar
Tenza-Ferrer, H., Magno, L. A. V., Romano-Silva, M. A., da Silva, J. F. & Gomez, M. V. Phα1β spider toxin reverses glial structural plasticity upon peripheral inflammation. Front. Cell. Neurosci. 13, 306 (2019).
Google Scholar
Riester, K. et al. In vivo characterization of functional states of cortical microglia during peripheral inflammation. Brain Behav. Immun. 87, 243–255 (2020).
Google Scholar
Lee, Y. et al. EWAS of post-COVID-19 patients shows methylation differences in the immune-response associated gene, IFI44L, three months after COVID-19 infection. Sci. Rep. 12, 11478 (2022).
Google Scholar
Fuks, F. DNA methylation and histone modifications: teaming up to silence genes. Curr. Opin. Genet. Dev. 15, 490–495 (2005).
Google Scholar
Bird, A. P. & Wolffe, A. P. Methylation-induced repression–belts, braces, and chromatin. Cell 99, 451–454 (1999).
Google Scholar
Nestler, E. J., Peña, C. J., Kundakovic, M., Mitchell, A. & Akbarian, S. Epigenetic basis of mental illness. Neuroscientist 22, 447–463 (2016).
Google Scholar
Maity, S., Farrell, K., Navabpour, S., Narayanan, S. N. & Jarome, T. J. Epigenetic mechanisms in memory and cognitive decline associated with aging and Alzheimer’s disease. Int. J. Mol. Sci. 22. (2021).
Selhub, J. Folate, vitamin B12 and vitamin B6 and one carbon metabolism. J. Nutr. Health Aging. 6, 39–42 (2002).
Google Scholar
de Queiroz, K. B. et al. Vitamin B12 is neuroprotective in experimental pneumococcal meningitis through modulation of hippocampal DNA methylation. J. Neuroinflammation. 17, 96 (2020).
Google Scholar
Cassiano, L. M. G. et al. Vitamin B12 attenuates leukocyte inflammatory signature in COVID-19 via methyl-dependent changes in epigenetic markings. Front. Immunol. 14, 1048790 (2023).
Google Scholar
Son, K-B., Lee, T-J. & Hwang, S-S. Disease severity classification and COVID-19 outcomes, Republic of Korea. Bull. World Health Organ. 99, 62–66 (2021).
Google Scholar
Souza-Silva, N. G. et al. Follow-up of cognitive impairment and inflammatory profile in individuals with mild COVID-19. J. Neuroimmunol. 389, 578327 (2024).
Google Scholar
Schmittgen, T. D. & Livak, K. J. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 3, 1101–1108 (2008).
Google Scholar
Krueger, F. & Andrews, S. R. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics 27, 1571–1572 (2011).
Google Scholar
Kent, W. J. et al. The human genome browser at UCSC. Genome Res. 12, 996–1006 (2002).
Google Scholar
Sandelin, A., Alkema, W., Engström, P., Wasserman, W. W. & Lenhard, B. JASPAR: an open-access database for eukaryotic transcription factor binding profiles. Nucleic Acids Res. 32, D91–D94 (2004).
Google Scholar
Castro-Mondragon, J. A. et al. JASPAR 2022: the 9th release of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 50, D165–D173 (2022).
Google Scholar
Mandal, P. K., Joshi, J. & Saharan, S. Visuospatial perception: an emerging biomarker for Alzheimer’s disease. J. Alzheimers Dis. 31 (Suppl 3), S117–S135 (2012).
Google Scholar
Ivanovska, M. et al. CCL-11 or Eotaxin-1: an immune marker for ageing and accelerated ageing in neuro-psychiatric disorders. Pharmaceuticals (Basel) 13 (2020).
Huber, A. K., Giles, D. A., Segal, B. M. & Irani, D. N. An emerging role for eotaxins in neurodegenerative disease. Clin. Immunol. 189, 29–33 (2018).
Google Scholar
Parajuli, B., Horiuchi, H., Mizuno, T., Takeuchi, H. & Suzumura, A. CCL11 enhances excitotoxic neuronal death by producing reactive oxygen species in microglia. Glia 63, 2274–2284 (2015).
Google Scholar
Scabia, G. et al. Reduced ccl11/eotaxin mediates the beneficial effects of environmental stimulation on the aged hippocampus. Brain Behav. Immun. 98, 234–244 (2021).
Google Scholar
Monje, M. L., Toda, H. & Palmer, T. D. Inflammatory blockade restores adult hippocampal neurogenesis. Science 302, 1760–1765 (2003).
Google Scholar
Villeda, S. A. et al. The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature 477, 90–94 (2011).
Google Scholar
Fernández-Castañeda, A. et al. Mild respiratory COVID can cause multi-lineage neural cell and myelin dysregulation. Cell 185, 2452–2468e16 (2022).
Google Scholar
Ostasov, P., Houdek, Z., Cendelin, J. & Kralickova, M. Role of leukemia inhibitory factor in the nervous system and its pathology. Rev. Neurosci. 26, 443–459 (2015).
Google Scholar
Sugiura, S. et al. Leukaemia inhibitory factor is required for normal inflammatory responses to injury in the peripheral and central nervous systems in vivo and is chemotactic for macrophages in vitro. Eur. J. Neurosci. 12, 457–466 (2000).
Google Scholar
Tomida, M. & Saito, T. The human hepatocyte growth factor (HGF) gene is transcriptionally activated by leukemia inhibitory factor through the Stat binding element. Oncogene 23, 679–686 (2004).
Google Scholar
Desole, C. et al. HGF and MET: from brain development to neurological disorders. Front. Cell. Dev. Biol. 9, 683609 (2021).
Google Scholar
Porro, C., Cianciulli, A. & Panaro, M. A. The regulatory role of IL-10 in neurodegenerative diseases. Biomolecules. 10. (2020).
Shaftel, S. S., Griffin, W. S. T. & O’Banion, M. K. The role of interleukin-1 in neuroinflammation and Alzheimer disease: an evolving perspective. J. Neuroinflammation. 5, 7 (2008).
Google Scholar
GTEx Consortium. The genotype-tissue expression (GTEx) project. Nat. Genet. 45, 580–585 (2013).
Google Scholar
Dillon, S. R. et al. Interleukin 31, a cytokine produced by activated T cells, induces dermatitis in mice. Nat. Immunol. 5, 752–760 (2004).
Google Scholar
Bruno, F. et al. Expression and signaling pathways of nerve growth factor (NGF) and Pro-NGF in breast cancer: a systematic review. Curr. Oncol. 29, 8103–8120 (2022).
Google Scholar
Garden, G. A. Epigenetics and the modulation of neuroinflammation. Neurotherapeutics 10, 782–788 (2013).
Google Scholar
Calabrese, R. et al. Methylation-dependent PAD2 upregulation in multiple sclerosis peripheral blood. Mult Scler. 18, 299–304 (2012).
Google Scholar
Daily, K. P. et al. DNA Hypomethylation Promotes the Expression of CASPASE-4 which Exacerbates Neuroinflammation and amyloid-β Deposition in Alzheimer’s Disease (The Ohio State University College of Medicine, 2023).
Choi, R., Park, W., Chun, G., Lee, S. G. & Lee, E. H. The utilization of serum folate and homocysteine tests and the prevalence of folate deficiency in reproductive-age Korean women during the COVID-19 pandemic. Nutrients. 15 (2023).
Sezgin, Y. Evaluation of serum vitamin B12 levels in patients with COVID-19 infection: a case-control study. J. Med. Biochem. 42, 524–529 (2023).
Google Scholar
Dalbeni, A. et al. Excessive vitamin B12 and poor outcome in COVID-19 pneumonia. Nutr. Metab. Cardiovasc. Dis. 31, 774–775 (2021).
Google Scholar
Ersöz, A. & Yılmaz, T. E. The association between micronutrient and hemogram values and prognostic factors in COVID-19 patients: a single-center experience from Turkey. Int. J. Clin. Pract. 75, e14078 (2021).
Google Scholar
Ermens, A. A. M., Vlasveld, L. T. & Lindemans, J. Significance of elevated cobalamin (vitamin B12) levels in blood. Clin. Biochem. 36, 585–590 (2003).
Google Scholar
Chitu, V. et al. Microglial homeostasis requires balanced CSF-1/CSF-2 receptor signaling. Cell. Rep. 30, 3004–3019e5 (2020).
Google Scholar
Sui, Y. et al. CXCL10-induced cell death in neurons: role of calcium dysregulation. Eur. J. Neurosci. 23, 957–964 (2006).
Google Scholar
Koper, O. M., Kamińska, J., Sawicki, K. & Kemona, H. CXCL9, CXCL10, CXCL11, and their receptor (CXCR3) in neuroinflammation and neurodegeneration. Adv. Clin. Exp. Med. 27, 849–856 (2018).
Google Scholar
Cassiano, L. M. G., Oliveira, M. S. & Coimbra, R. S. Vitamin B12 as a neuroprotectant in neuroinflammation. In (eds Martin, C. R. et al.) Vitamins and Minerals in Neurologic Disorders. 1st ed. 399–413. (Academic, 2023).
Erfani, Z., Alizadeh, N., Faraji, N. & Teymouri, A. Vitamin B12 effectiveness in the management of hospitalized COVID-19 and its clinical outcomes and complications: a randomized clinical trial. Health Sci. Rep. 6, e1509 (2023).
Google Scholar
Vitamin, B. Deficiency in COVID-19 recovered patients: Case Report. Int. J. Pharm. Res. 13 (2020).
DeGregori, J. & Johnson, D. G. Distinct and overlapping roles for E2F family members in transcription, proliferation and apoptosis. Curr. Mol. Med. 6, 739–748 (2006).
Google Scholar
Fu, J., Guo, O., Zhen, Z. & Zhen, J. Essential functions of the transcription factor Npas4 in neural circuit development, plasticity, and diseases. Front. Neurosci. 14, 603373 (2020).
Google Scholar
Huang, P., Chandra, V. & Rastinejad, F. Retinoic acid actions through mammalian nuclear receptors. Chem. Rev. 114, 233–254 (2014).
Google Scholar
Fujii, U. et al. Effect of a retinoid X receptor partial agonist on airway inflammation and hyperresponsiveness in a murine model of asthma. Respir Res. 18, 23 (2017).
Google Scholar
Cramer, P. E. et al. ApoE-directed therapeutics rapidly clear β-amyloid and reverse deficits in AD mouse models. Science 335, 1503–1506 (2012).
Google Scholar
McFarland, K. et al. Low dose bexarotene treatment rescues dopamine neurons and restores behavioral function in models of Parkinson’s disease. ACS Chem. Neurosci. 4, 1430–1438 (2013).
Google Scholar
Hammal, F., de Langen, P., Bergon, A., Lopez, F. & Ballester, B. ReMap 2022: a database of human, mouse, Drosophila and Arabidopsis regulatory regions from an integrative analysis of DNA-binding sequencing experiments. Nucleic Acids Res. 50, D316–D325 (2022).
Google Scholar
Taquet, M., Dercon, Q. & Harrison, P. J. Six-month sequelae of post-vaccination SARS-CoV-2 infection: a retrospective cohort study of 10,024 breakthrough infections. Brain Behav. Immun. 103, 154–162 (2022).
Google Scholar