Marslin, G. et al. Secondary metabolites in the green synthesis of metallic nanoparticles. Materials 11 (6), 940 (2018).
Google Scholar
Singh, A., Suki, M., Sharma, R. & Ingle, P. Applications of nanotechnology: a review. IJARCS 7, 16–32 (2020).
Google Scholar
Ying, S. et al. Green synthesis of nanoparticles: current developments and limitations. Environ. Technol. Innov. 26, 102336 (2022).
Google Scholar
Hemmati, S. et al. Green synthesis and characterization of silver nanoparticles using Fritillaria flower extract and their antibacterial activity against some human pathogens. Polyhedron 158, 8–14 (2019).
Google Scholar
Sudhasree, S., Shakila Banu, A., Brindha, P. & Kurian, G. A. Synthesis of nickel nanoparticles by chemical and green route and their comparison in respect to biological effect and toxicity. Toxicol. Environ. Chem. 96 (5), 743–754 (2014).
Google Scholar
Preethi, R. & Padma, P. R. Biosynthesis and bioactivity of silver nanobioconjugates from grape (Vitis vinifera) seeds and its active component resveratrol. IJPSR 7 (10), 4253 (2016).
Google Scholar
Kumar, V. & Yadav, S. K. Plant-mediated synthesis of silver and gold nanoparticles and their applications. JCTB 84 (2), 151–157 (2009).
Google Scholar
Iravani, S. Green synthesis of metal nanoparticles using plants. Green Chem. 13 (10), 2638–2650 (2011).
Google Scholar
Lukman, A. I., Gong, B., Marjo, C. E., Roessner, U. & Harris, A. T. Facile synthesis, stabilization, and anti-bacterial performance of discrete ag nanoparticles using Medicago sativa seed exudates. J. Colloid Interface Sci. 353 (2), 433–444 (2011).
Google Scholar
Kumar, A. M., Chisti, Y. & Banerjee, U. C. Synthesis of metallic nanoparticles using plant extracts. Biotechnol. Adv. 31 (2), 346–356 (2013).
Google Scholar
Pirtarighat, S., Ghannadnia, M. & Baghshahi, S. Green synthesis of silver nanoparticles using the plant extract of Salvia spinosa grown in vitro and their antibacterial activity assessment. J. Nanostructure Chem. 9, 1–9 (2019).
Google Scholar
Gnanajobitha, G. et al. Fruit-mediated synthesis of silver nanoparticles using Vitis vinifera and evaluation of their antimicrobial efficacy. J. Nanostructure Chem. 3, 1–6 (2013).
Google Scholar
Asaduzzaman, A. K. M., Chun, B. S. & Kabir, S. R. Vitis vinifera assisted silver nanoparticles with antibacterial and antiproliferative activity against Ehrlich Ascites carcinoma cells. J. Nanopart. 2016 (1), 6898926 (2016).
Awwad, A. M., Salem, N. M. & Abdeen, A. O. Green synthesis of silver nanoparticles using carob leaf extract and its antibacterial activity. IJIC 4, 1–6 (2013).
Manosalva, N. et al. Green synthesis of silver nanoparticles: effect of synthesis reaction parameters on antimicrobial activity. World J. Microbiol. Biotechnol. 35, 1–9 (2019).
Google Scholar
Chung, I. M., Rekha, K., Rajakumar, G. & Thiruvengadam, M. Elicitation of silver nanoparticles enhanced the secondary metabolites and pharmacological activities in cell suspension cultures of bitter gourd. 3 Biotech. 8, 1–12 (2018).
Google Scholar
Fazal, H., Abbasi, B. H., Ahmad, N. & Ali, M. Elicitation of medicinally important antioxidant secondary metabolites with silver and gold nanoparticles in callus cultures of Prunella vulgaris L. Appl. Biochem. Biotechnol. 180, 1076–1092 (2016).
Google Scholar
Golkar, P., Moradi, M. & Garousi, G. A. Elicitation of stevia glycosides using salicylic acid and silver nanoparticles under callus culture. Sugar Tech. 21, 569–577 (2019).
Google Scholar
Dehghani-Aghchekohal, Z., Omidi, M., Azizinezhad, R. & Etminan, A. Stimulation of secondary metabolites and γ-terpinene synthase by silver nanoparticles in callus cultures of Carum carvi. Appl. Biochem. Biotechnol. 194 (7), 3228–3241 (2022).
Google Scholar
Wawrosch, C. & Zotchev, S. B. Production of bioactive plant secondary metabolites through in vitro technologies—status and outlook. Appl. Microbiol. Biotechnol. 105 (18), 6649–6668 (2021).
Google Scholar
Ramawat, K. G. & Biotechnology Secondary Metabolites, second edition. CRC Press, Florida (2007).
Kruszka, D. et al. Silver nanoparticles affect phenolic and phytoalexin composition of Arabidopsis thaliana. Sci. Total Environ. 716, 135361 (2020).
Google Scholar
Fayaz, A. M., Balaji, K., Kalaichelvan, P. T. & Venkatesan, R. Fungal based synthesis of silver nanoparticles-an effect of temperature on the size of particles. Colloids Surf. B Biointerfaces. 74 (1), 123–126 (2009).
Google Scholar
Ambika, S. & Sundrarajan, M. Antibacterial behaviour of Vitex negundo extract assisted ZnO nanoparticles against pathogenic bacteria. J. Photochem. Photobiol B. 146, 52–57 (2015).
Google Scholar
Gamborg, O. L., Miller, R. & Ojima, K. Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell. Res. 50 (1), 151–158 (1968).
Google Scholar
Murashige, T. & Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant., 15(3) (1962).
Almagro, L. et al. A. A smart strategy to improve t-resveratrol production in grapevine cells treated with cyclodextrin polymers coated with magnetic nanoparticles. Polymers 12 (4), 991 (2020).
Google Scholar
Singleton, V. L. & Rossi, J. A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. AJEV 16 (3), 144–158 (1965).
Google Scholar
Göktürk Baydar, N., Babalık, Z., Türk, F. & Çetin, E. Phenolic composition and antioxidant activities of wines and extracts of some grape varieties grown in Turkey. JAS 17 (1), 67–76 (2011).
Metsalu, T. & Vilo, J. ClustVis: a web tool for visualizing clustering of multivariate data using principal component analysis and heatmap. Nucleic Acids res. 43 (W1), W566–W570 (2015).
Google Scholar
Ponarulselvam, S. et al. Synthesis of silver nanoparticles using leaves of Catharanthus roseus Linn. G. Don and their antiplasmodial activities. Asian Pac. J. Trop. Biomed. 2 (7), 574–580 (2012).
Google Scholar
Mukherji, S., Bharti, S., Shukla, G. & Mukherji, S. Synthesis and characterization of size-and shape-controlled silver nanoparticles. Phys. Sci. Rev. 4 (1), 20170082 (2018).
Google Scholar
Shnoudeh, A. J. et al. Synthesis, characterization, and applications of metal nanoparticles. In Biomaterials and Bionanotechnology (527–612) (Academic, 2019).
Mashwani, Z. U. R., Khan, T., Khan, M. A. & Nadhman, A. Synthesis in plants and plant extracts of silver nanoparticles with potent antimicrobial properties: current status and future prospects. Appl. Microbiol. Biotechnol. 99, 9923–9934 (2015).
Google Scholar
Sowmyya, T. & Lakshmi, G. V. Soymida febrifuga aqueous root extract maneuvered silver nanoparticles as mercury nanosensor and potential microbicide. World Sci. News. 114, 84–105 (2018).
Google Scholar
Wan, M. et al. Biosynthesized silver nanoparticles by aqueous stem extract of Entada spiralis and screening of their biomedical activity. Front. Chem. 8, 620 (2020).
Google Scholar
Aziz, S. B. et al. Fabrication of interconnected plasmonic spherical silver nanoparticles with enhanced localized surface plasmon resonance (LSPR) peaks using quince leaf extract solution. Nanomaterials, 9(11) (2019).
Badawy, A. M. E. et al. Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions. Environ. Sci. Technol. 44 (4), 1260–1266 (2010).
Google Scholar
Velgosová, O., Mražíková, A. & Marcinčáková, R. Influence of pH on green synthesis of Ag nanoparticles. Mater. Lett. 180, 336–339 (2016).
Google Scholar
Habibullah, G., Viktorova, J., Ulbrich, P. & Ruml, T. Effect of the physicochemical changes in the antimicrobial durability of green synthesized silver nanoparticles during their long-term storage. RSC Adv. 12 (47), 30386–30403 (2022).
Google Scholar
Ghosh, S. et al. Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents. Int. J. Nanomed. 7, 483–496 (2012).
Google Scholar
Zia, F., Ghafoor, N., Iqbal, M. & Mehboob, S. Green synthesis and characterization of silver nanoparticles using Cydonia oblong seed extract. Appl. Nanosci. 6, 1023–1029 (2016).
Google Scholar
Said, M. I. & Othman, A. A. Fast green synthesis of silver nanoparticles using grape leaves extract. Mater. Res. Express. 6 (5), 055029 (2019).
Google Scholar
Sharma, N. K. et al. Green route synthesis and characterization techniques of silver nanoparticles and their biological adeptness. ACS Omega. 7 (31), 27004–27020 (2022).
Google Scholar
Miranda, A., Akpobolokemi, T., Chung, E., Ren, G. & Raimi-Abraham, B. T. pH alteration in plant-mediated green synthesis and its resultant impact on antimicrobial properties of silver nanoparticles (AgNPs). Antibiotics 11 (11), 1592 (2022).
Google Scholar
Zhang, H. et al. Effects of temperature on the toxicity of waterborne nanoparticles under global warming: facts and mechanisms. Mar. Environ. Res. 181, 105757 (2022).
Google Scholar
Alqadi, M. K., Noqtah, A., Alzoubi, O. A., Alzouby, F. Y., Aljarrah, K. & J., & pH effect on the aggregation of silver nanoparticles synthesized by chemical reduction. Mater. Sci. -Pol. 32, 107–111 (2014).
Google Scholar
Bhattacharjee, S. DLS and zeta potential–what they are and what they are not? JCR 235, 337–351 (2016).
Google Scholar
Armendariz, V. et al. Size controlled gold nanoparticle formation by Avena sativa biomass: use of plants in nanobiotechnology. J. Nanoparticle res. 6, 377–382 (2004).
Google Scholar
Fernando, I. & Zhou, Y. Impact of pH on the stability, dissolution and aggregation kinetics of silver nanoparticles. Chemosphere 216, 297–305 (2019).
Google Scholar
Bali, R. & Harris, A. T. Biogenic synthesis of au nanoparticles using vascular plants. Ind. Eng. Chem. Res. 49 (24), 12762–12772 (2010).
Google Scholar
Sathishkumar, M. et al. Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity. Colloids Surf. B Biointerfaces. 73 (2), 332–338 (2009).
Google Scholar
Song, J. Y. & Kim, B. S. Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess. Biosyst Eng. 32, 79–84 (2009).
Google Scholar
Borase, H. P. et al. Plant extract: a promising biomatrix for eco-friendly, controlled synthesis of silver nanoparticles. Appl. Biochem. Biotechnol. 173 (1), 1–29 (2014).
Google Scholar
Naser, D. K., Abbas, A. K. & Aadim, K. A. Zeta potential of Ag, Cu, ZnO, CdO and Sn nanoparticles prepared by pulse laser ablation in liquid environment. IJS, 2570–2581 (2020).
Gengan, R., Anand, K., Phulukdaree, A. & Chuturgoon, A. A549 lung cell line activity of biosynthesized silver nanoparticles using Albizia adianthifolia leaf. Colloids Surf. B Biointerfaces. 105, 87–91 (2013).
Google Scholar
Sapsford, K. E., Tyner, K. M., Dair, B. J., Deschamps, J. R. & Medintz, I. L. Analyzing nanomaterial bioconjugates: a review of current and emerging purification and characterization techniques. Anal. Chem. 83 (12), 4453–4488 (2011).
Google Scholar
Zhang, C., Yan, Q., Cheuk, W. K. & Wu, J. Enhancement of tanshinone production in Salvia miltiorrhiza hairy root culture by ag + elicitation and nutrient feeding. Planta Med. 70 (02), 147–151 (2004).
Google Scholar
Zhang, N., Sun, J., Yin, L., Liu, J. & Chen, C. Silver nanoparticles: from in vitro green synthesis to in vivo biological effects in plants. Adv. Agrochem. 313–323 (2023).
Strader, L. C., Beisner, E. R. & Bartel, B. Silver ions increase auxin efflux independently of effects on ethylene response. Plant. Cell. 21 (11), 3585–3590 (2009).
Google Scholar
Pantelić, M. M. et al. Phenolic profiles, antioxidant activity and minerals in leaves of different grapevine varieties grown in Serbia. J. Food Compos. Anal. 62, 76–83 (2017).
Google Scholar
Goufo, P., Singh, R. K. & Cortez, I. A reference list of phenolic compounds (including stilbenes) in grapevine (Vitis vinifera L.) roots, woods, canes, stems, and leaves. Antioxidants 9 (5), 398 (2020).
Google Scholar
Teszlák, P., Kocsis, M., Scarpellini, A., Jakab, G. & Kőrösi, L. Foliar exposure of grapevine (Vitis vinifera L.) to TiO2 nanoparticles under field conditions: photosynthetic response and flavonol profile. Photosynthetica 56 (4), 1378–1386 (2018).
Google Scholar
Zhang, B., Zheng, L. P., Li, Y., Wen Wang, J. & W., & Stimulation of artemisinin production in Artemisia annua hairy roots by Ag-SiO2 core-shell nanoparticles. Curr. Nanosci. 9 (3), 363–370 (2013).
Google Scholar
Homaee, M. B. & Ehsanpour, A. A. Physiological and biochemical responses of potato (Solanum tuberosum) to silver nanoparticles and silver nitrate treatments under in vitro conditions. Indian J. Plant. Physiol. 20, 353–359 (2015).
Google Scholar
Večeřová, K. et al. Changes of primary and secondary metabolites in barley plants exposed to CdO nanoparticles. Environ. Poll. 218, 207–218 (2016).
Google Scholar
Marslin, G., Sheeba, C. J. & Franklin, G. Nanoparticles alter secondary metabolism in plants via ROS burst. Front. Plant. Sci. 8, 832 (2017).
Google Scholar