Synthesis methods impact silver nanoparticle properties and phenolic compound production in grapevine cell cultures

Synthesis methods impact silver nanoparticle properties and phenolic compound production in grapevine cell cultures Synthesis methods impact silver nanoparticle properties and phenolic compound production in grapevine cell cultures


  • Marslin, G. et al. Secondary metabolites in the green synthesis of metallic nanoparticles. Materials 11 (6), 940 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Singh, A., Suki, M., Sharma, R. & Ingle, P. Applications of nanotechnology: a review. IJARCS 7, 16–32 (2020).

    MATH 

    Google Scholar 

  • Ying, S. et al. Green synthesis of nanoparticles: current developments and limitations. Environ. Technol. Innov. 26, 102336 (2022).

    Article 
    CAS 

    Google Scholar 

  • Hemmati, S. et al. Green synthesis and characterization of silver nanoparticles using Fritillaria flower extract and their antibacterial activity against some human pathogens. Polyhedron 158, 8–14 (2019).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Sudhasree, S., Shakila Banu, A., Brindha, P. & Kurian, G. A. Synthesis of nickel nanoparticles by chemical and green route and their comparison in respect to biological effect and toxicity. Toxicol. Environ. Chem. 96 (5), 743–754 (2014).

    Article 
    CAS 

    Google Scholar 

  • Preethi, R. & Padma, P. R. Biosynthesis and bioactivity of silver nanobioconjugates from grape (Vitis vinifera) seeds and its active component resveratrol. IJPSR 7 (10), 4253 (2016).

    CAS 
    MATH 

    Google Scholar 

  • Kumar, V. & Yadav, S. K. Plant-mediated synthesis of silver and gold nanoparticles and their applications. JCTB 84 (2), 151–157 (2009).

    ADS 
    CAS 
    MATH 

    Google Scholar 

  • Iravani, S. Green synthesis of metal nanoparticles using plants. Green Chem. 13 (10), 2638–2650 (2011).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Lukman, A. I., Gong, B., Marjo, C. E., Roessner, U. & Harris, A. T. Facile synthesis, stabilization, and anti-bacterial performance of discrete ag nanoparticles using Medicago sativa seed exudates. J. Colloid Interface Sci. 353 (2), 433–444 (2011).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Kumar, A. M., Chisti, Y. & Banerjee, U. C. Synthesis of metallic nanoparticles using plant extracts. Biotechnol. Adv. 31 (2), 346–356 (2013).

    Article 
    MATH 

    Google Scholar 

  • Pirtarighat, S., Ghannadnia, M. & Baghshahi, S. Green synthesis of silver nanoparticles using the plant extract of Salvia spinosa grown in vitro and their antibacterial activity assessment. J. Nanostructure Chem. 9, 1–9 (2019).

    Article 
    CAS 

    Google Scholar 

  • Gnanajobitha, G. et al. Fruit-mediated synthesis of silver nanoparticles using Vitis vinifera and evaluation of their antimicrobial efficacy. J. Nanostructure Chem. 3, 1–6 (2013).

    Article 

    Google Scholar 

  • Asaduzzaman, A. K. M., Chun, B. S. & Kabir, S. R. Vitis vinifera assisted silver nanoparticles with antibacterial and antiproliferative activity against Ehrlich Ascites carcinoma cells. J. Nanopart. 2016 (1), 6898926 (2016).

    Google Scholar 

  • Awwad, A. M., Salem, N. M. & Abdeen, A. O. Green synthesis of silver nanoparticles using carob leaf extract and its antibacterial activity. IJIC 4, 1–6 (2013).

    Google Scholar 

  • Manosalva, N. et al. Green synthesis of silver nanoparticles: effect of synthesis reaction parameters on antimicrobial activity. World J. Microbiol. Biotechnol. 35, 1–9 (2019).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Chung, I. M., Rekha, K., Rajakumar, G. & Thiruvengadam, M. Elicitation of silver nanoparticles enhanced the secondary metabolites and pharmacological activities in cell suspension cultures of bitter gourd. 3 Biotech. 8, 1–12 (2018).

    Article 
    MATH 

    Google Scholar 

  • Fazal, H., Abbasi, B. H., Ahmad, N. & Ali, M. Elicitation of medicinally important antioxidant secondary metabolites with silver and gold nanoparticles in callus cultures of Prunella vulgaris L. Appl. Biochem. Biotechnol. 180, 1076–1092 (2016).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Golkar, P., Moradi, M. & Garousi, G. A. Elicitation of stevia glycosides using salicylic acid and silver nanoparticles under callus culture. Sugar Tech. 21, 569–577 (2019).

    Article 
    CAS 

    Google Scholar 

  • Dehghani-Aghchekohal, Z., Omidi, M., Azizinezhad, R. & Etminan, A. Stimulation of secondary metabolites and γ-terpinene synthase by silver nanoparticles in callus cultures of Carum carvi. Appl. Biochem. Biotechnol. 194 (7), 3228–3241 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wawrosch, C. & Zotchev, S. B. Production of bioactive plant secondary metabolites through in vitro technologies—status and outlook. Appl. Microbiol. Biotechnol. 105 (18), 6649–6668 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Ramawat, K. G. & Biotechnology Secondary Metabolites, second edition. CRC Press, Florida (2007).

  • Kruszka, D. et al. Silver nanoparticles affect phenolic and phytoalexin composition of Arabidopsis thaliana. Sci. Total Environ. 716, 135361 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fayaz, A. M., Balaji, K., Kalaichelvan, P. T. & Venkatesan, R. Fungal based synthesis of silver nanoparticles-an effect of temperature on the size of particles. Colloids Surf. B Biointerfaces. 74 (1), 123–126 (2009).

    Article 
    MATH 

    Google Scholar 

  • Ambika, S. & Sundrarajan, M. Antibacterial behaviour of Vitex negundo extract assisted ZnO nanoparticles against pathogenic bacteria. J. Photochem. Photobiol B. 146, 52–57 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gamborg, O. L., Miller, R. & Ojima, K. Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell. Res. 50 (1), 151–158 (1968).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Murashige, T. & Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant., 15(3) (1962).

  • Almagro, L. et al. A. A smart strategy to improve t-resveratrol production in grapevine cells treated with cyclodextrin polymers coated with magnetic nanoparticles. Polymers 12 (4), 991 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Singleton, V. L. & Rossi, J. A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. AJEV 16 (3), 144–158 (1965).

    CAS 
    MATH 

    Google Scholar 

  • Göktürk Baydar, N., Babalık, Z., Türk, F. & Çetin, E. Phenolic composition and antioxidant activities of wines and extracts of some grape varieties grown in Turkey. JAS 17 (1), 67–76 (2011).

    Google Scholar 

  • Metsalu, T. & Vilo, J. ClustVis: a web tool for visualizing clustering of multivariate data using principal component analysis and heatmap. Nucleic Acids res. 43 (W1), W566–W570 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Ponarulselvam, S. et al. Synthesis of silver nanoparticles using leaves of Catharanthus roseus Linn. G. Don and their antiplasmodial activities. Asian Pac. J. Trop. Biomed. 2 (7), 574–580 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mukherji, S., Bharti, S., Shukla, G. & Mukherji, S. Synthesis and characterization of size-and shape-controlled silver nanoparticles. Phys. Sci. Rev. 4 (1), 20170082 (2018).

    MATH 

    Google Scholar 

  • Shnoudeh, A. J. et al. Synthesis, characterization, and applications of metal nanoparticles. In Biomaterials and Bionanotechnology (527–612) (Academic, 2019).

  • Mashwani, Z. U. R., Khan, T., Khan, M. A. & Nadhman, A. Synthesis in plants and plant extracts of silver nanoparticles with potent antimicrobial properties: current status and future prospects. Appl. Microbiol. Biotechnol. 99, 9923–9934 (2015).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Sowmyya, T. & Lakshmi, G. V. Soymida febrifuga aqueous root extract maneuvered silver nanoparticles as mercury nanosensor and potential microbicide. World Sci. News. 114, 84–105 (2018).

    CAS 

    Google Scholar 

  • Wan, M. et al. Biosynthesized silver nanoparticles by aqueous stem extract of Entada spiralis and screening of their biomedical activity. Front. Chem. 8, 620 (2020).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Aziz, S. B. et al. Fabrication of interconnected plasmonic spherical silver nanoparticles with enhanced localized surface plasmon resonance (LSPR) peaks using quince leaf extract solution. Nanomaterials, 9(11) (2019).

  • Badawy, A. M. E. et al. Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions. Environ. Sci. Technol. 44 (4), 1260–1266 (2010).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar 

  • Velgosová, O., Mražíková, A. & Marcinčáková, R. Influence of pH on green synthesis of Ag nanoparticles. Mater. Lett. 180, 336–339 (2016).

    Article 
    ADS 

    Google Scholar 

  • Habibullah, G., Viktorova, J., Ulbrich, P. & Ruml, T. Effect of the physicochemical changes in the antimicrobial durability of green synthesized silver nanoparticles during their long-term storage. RSC Adv. 12 (47), 30386–30403 (2022).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ghosh, S. et al. Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents. Int. J. Nanomed. 7, 483–496 (2012).

    CAS 
    MATH 

    Google Scholar 

  • Zia, F., Ghafoor, N., Iqbal, M. & Mehboob, S. Green synthesis and characterization of silver nanoparticles using Cydonia oblong seed extract. Appl. Nanosci. 6, 1023–1029 (2016).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar 

  • Said, M. I. & Othman, A. A. Fast green synthesis of silver nanoparticles using grape leaves extract. Mater. Res. Express. 6 (5), 055029 (2019).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar 

  • Sharma, N. K. et al. Green route synthesis and characterization techniques of silver nanoparticles and their biological adeptness. ACS Omega. 7 (31), 27004–27020 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Miranda, A., Akpobolokemi, T., Chung, E., Ren, G. & Raimi-Abraham, B. T. pH alteration in plant-mediated green synthesis and its resultant impact on antimicrobial properties of silver nanoparticles (AgNPs). Antibiotics 11 (11), 1592 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, H. et al. Effects of temperature on the toxicity of waterborne nanoparticles under global warming: facts and mechanisms. Mar. Environ. Res. 181, 105757 (2022).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Alqadi, M. K., Noqtah, A., Alzoubi, O. A., Alzouby, F. Y., Aljarrah, K. & J., & pH effect on the aggregation of silver nanoparticles synthesized by chemical reduction. Mater. Sci. -Pol. 32, 107–111 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Bhattacharjee, S. DLS and zeta potential–what they are and what they are not? JCR 235, 337–351 (2016).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Armendariz, V. et al. Size controlled gold nanoparticle formation by Avena sativa biomass: use of plants in nanobiotechnology. J. Nanoparticle res. 6, 377–382 (2004).

    Article 
    ADS 
    CAS 
    MATH 

    Google Scholar 

  • Fernando, I. & Zhou, Y. Impact of pH on the stability, dissolution and aggregation kinetics of silver nanoparticles. Chemosphere 216, 297–305 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Bali, R. & Harris, A. T. Biogenic synthesis of au nanoparticles using vascular plants. Ind. Eng. Chem. Res. 49 (24), 12762–12772 (2010).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Sathishkumar, M. et al. Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity. Colloids Surf. B Biointerfaces. 73 (2), 332–338 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Song, J. Y. & Kim, B. S. Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess. Biosyst Eng. 32, 79–84 (2009).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Borase, H. P. et al. Plant extract: a promising biomatrix for eco-friendly, controlled synthesis of silver nanoparticles. Appl. Biochem. Biotechnol. 173 (1), 1–29 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Naser, D. K., Abbas, A. K. & Aadim, K. A. Zeta potential of Ag, Cu, ZnO, CdO and Sn nanoparticles prepared by pulse laser ablation in liquid environment. IJS, 2570–2581 (2020).

  • Gengan, R., Anand, K., Phulukdaree, A. & Chuturgoon, A. A549 lung cell line activity of biosynthesized silver nanoparticles using Albizia adianthifolia leaf. Colloids Surf. B Biointerfaces. 105, 87–91 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sapsford, K. E., Tyner, K. M., Dair, B. J., Deschamps, J. R. & Medintz, I. L. Analyzing nanomaterial bioconjugates: a review of current and emerging purification and characterization techniques. Anal. Chem. 83 (12), 4453–4488 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, C., Yan, Q., Cheuk, W. K. & Wu, J. Enhancement of tanshinone production in Salvia miltiorrhiza hairy root culture by ag + elicitation and nutrient feeding. Planta Med. 70 (02), 147–151 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, N., Sun, J., Yin, L., Liu, J. & Chen, C. Silver nanoparticles: from in vitro green synthesis to in vivo biological effects in plants. Adv. Agrochem. 313–323 (2023).

  • Strader, L. C., Beisner, E. R. & Bartel, B. Silver ions increase auxin efflux independently of effects on ethylene response. Plant. Cell. 21 (11), 3585–3590 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pantelić, M. M. et al. Phenolic profiles, antioxidant activity and minerals in leaves of different grapevine varieties grown in Serbia. J. Food Compos. Anal. 62, 76–83 (2017).

    Article 
    MATH 

    Google Scholar 

  • Goufo, P., Singh, R. K. & Cortez, I. A reference list of phenolic compounds (including stilbenes) in grapevine (Vitis vinifera L.) roots, woods, canes, stems, and leaves. Antioxidants 9 (5), 398 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Teszlák, P., Kocsis, M., Scarpellini, A., Jakab, G. & Kőrösi, L. Foliar exposure of grapevine (Vitis vinifera L.) to TiO2 nanoparticles under field conditions: photosynthetic response and flavonol profile. Photosynthetica 56 (4), 1378–1386 (2018).

    Article 

    Google Scholar 

  • Zhang, B., Zheng, L. P., Li, Y., Wen Wang, J. & W., & Stimulation of artemisinin production in Artemisia annua hairy roots by Ag-SiO2 core-shell nanoparticles. Curr. Nanosci. 9 (3), 363–370 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • Homaee, M. B. & Ehsanpour, A. A. Physiological and biochemical responses of potato (Solanum tuberosum) to silver nanoparticles and silver nitrate treatments under in vitro conditions. Indian J. Plant. Physiol. 20, 353–359 (2015).

    Article 

    Google Scholar 

  • Večeřová, K. et al. Changes of primary and secondary metabolites in barley plants exposed to CdO nanoparticles. Environ. Poll. 218, 207–218 (2016).

    Article 
    MATH 

    Google Scholar 

  • Marslin, G., Sheeba, C. J. & Franklin, G. Nanoparticles alter secondary metabolism in plants via ROS burst. Front. Plant. Sci. 8, 832 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 




  • Source link

    Add a comment

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Keep Up to Date with the Most Important News

    By pressing the Subscribe button, you confirm that you have read and are agreeing to our Privacy Policy and Terms of Use