Jimbo M, Kunisaki K, Ghaed M, Yu Y, Flores H, Hotaling J. Fertility in the aging male: a systematic review. Fertil Steril. 2022;118:1022–34.
Google Scholar
de Kluiver H, Buizer‐Voskamp JE, Dolan CV, Boomsma DI. Paternal age and psychiatric disorders: a review. Am J Med Genet B Neuropsychiatr Genet. 2017;174B:202–13.
Google Scholar
Janecka M, Mill J, Basson M, Goriely A, Spiers H, Reichenberg A, et al. Advanced paternal age effects in neurodevelopmental disorders—review of potential underlying mechanisms. Transl Psychiatry. 2017;7:e1019.
Google Scholar
Couture V, Delisle S, Mercier A, Pennings G. The other face of advanced paternal age: a scoping review of its terminological, social, public health, psychological, ethical and regulatory aspects. Hum Reprod Update. 2021;27:305–23.
Google Scholar
Frans EM, Sandin S, Reichenberg A, Lichtenstein P, Langstrom N, Hultman CM. Advancing paternal age and bipolar disorder. Arch Gen Psychiatry. 2008;65:1034–40.
Google Scholar
Grigoroiu-Serbanescu M, Wickramaratne PJ, Mihailescu R, Prelipceanu D, Sima D, Codreanu M, et al. Paternal age effect on age of onset in bipolar I disorder is mediated by sex and family history. Am J Med Genet B Neuropsychiatr Genet. 2012;159B:567–79.
Google Scholar
Malaspina D, Harlap S, Fennig S, Heiman D, Nahon D, Feldman D, et al. Advancing paternal age and the risk of schizophrenia. Arch Gen Psychiatry. 2001;58:361–7.
Google Scholar
Reichenberg A, Gross R, Weiser M, Bresnahan M, Silverman J, Harlap S, et al. Advancing paternal age and autism. Arch Gen Psychiatry. 2006;63:1026–32.
Google Scholar
Zammit S, Allebeck P, Dalman C, Lundberg I, Hemmingson T, Owen MJ, et al. Paternal age and risk for schizophrenia. Br J Psychiatry. 2003;183:405–8.
Google Scholar
Miller B, Messias E, Miettunen J, Alaraisanen A, Jarvelin M-R, Koponen H, et al. Meta-analysis of paternal age and schizophrenia risk in male versus female offspring. Schizophr Bull. 2011;37:1039–47.
Google Scholar
McGrath JJ, Petersen L, Agerbo E, Mors O, Mortensen PB, Pedersen CB. A comprehensive assessment of parental age and psychiatric disorders. JAMA Psychiatry. 2014;71:301–9.
Google Scholar
Racinea SE, Culberta KM, Burta SA, Klumpa KL. Advanced paternal age at birth: phenotypic and etiologic associations with eating pathology in offspring. Psychol Med. 2014;44:1029–41.
Google Scholar
D’Onofrio BM, Rickert ME, Frans E, Kuja-Halkola R, Almqvist C, Sjolander A, et al. Paternal age at childbearing and offspring psychiatric and academic morbidity. JAMA Psychiatry. 2014;71:432–8.
Google Scholar
Javaras K, Rickert ME, Thornton LM, Peat CM, Baker JH, Birgegård A, et al. Paternal age at childbirth and eating disorders in offspring. Psychol Med. 2017;47:576–84.
Google Scholar
Lan K-C, Chiang H-J, Huang T-L, Chiou Y-J, Hsu T-Y, Ou Y-C, et al. Association between paternal age and risk of schizophrenia: a nationwide population–based study. J Assist Reprod Genet. 2021;38:85–93.
Google Scholar
Gao Y, Yu Y, Xiao J, Luo J, Zhang Y, Tian Y, et al. Association of grandparental and parental age at childbirth with autism spectrum disorder in children. JAMA Netw Open. 2020;3:e202868–e202868.
Google Scholar
Wang SH, Hsiao PC, Yeh LL, Liu CM, Liu CC, Hwang TJ, et al. Advanced paternal age and early-onset of schizophrenia in sporadic cases: not confounded by parental polygenic risk to schizophrenia. Biol Psychiatry. 2019;86:56–64.
Google Scholar
Malaspina D. Paternal factors and schizophrenia risk: de novo mutations and imprinting. Schizophr Bull. 2001;27:379–93.
Google Scholar
Kong A, Frigge ML, Masson G, Besenbacher S, Sulem P, Magnusson G, et al. Rate of de novo mutations and the importance of father’s age to disease risk. Nature. 2012;488:471–5.
Google Scholar
Turner TN, Coe BP, Dickel DE, Hoekzema K, Nelson BJ, Zody MC, et al. Genomic patterns of de novo mutation in simplex autism. Cell. 2017;171:710–22.
Google Scholar
The Deciphering Developmental Disorders Study. Prevalence and architecture of de novo mutations in developmental disorders. Nature. 2017;542:433–8.
Google Scholar
Goes FS, Pirooznia M, Tehan M, Zandi PP, McGrath J, Wolyniec P, et al. De novo variation in bipolar disorder. Mol Psychiatry. 2019;10:1038.
Howrigan DP, Rose SA, Samocha KE, Fromer M, Cerrato F, Chen WJ, et al. Exome sequencing in schizophrenia-affected parent–offspring trios reveals risk conferred by protein-coding de novo mutations. Nat Neurosci. 2020;23:185–93.
Google Scholar
Jónsson H, Sulem P, Arnadottir GA, Pálsson G, Eggertsson HP, Kristmundsdottir S, et al. Multiple transmissions of de novo mutations in families. Nat Genet. 2018;50:1674–80.
Google Scholar
Jónsson H, Sulem P, Kehr B, Kristmundsdottir S, Zink F, Hjartarson E, et al. Parental influence on human germline de novo mutations in 1548 trios from Iceland. Nature. 2017;549:519–22.
Google Scholar
Goldmann J, Veltman J, Gilissen C. De novo mutations reflect development and aging of the human germline. Trends Genet. 2019;35:828–39.
Google Scholar
Wong WS, Solomon BD, Bodian DL, Kothiyal P, Eley G, Huddleston KC, et al. New observations on maternal age effect on germline de novo mutations. Nat Commun. 2016;7:10486.
Google Scholar
Consortium GotN. Whole-genome sequence variation, population structure and demographic history of the Dutch population. Nat Genet. 2014;46:818–25.
Google Scholar
Goldmann JM, Wong WS, Pinelli M, Farrah T, Bodian D, Stittrich AB, et al. Parent-of-origin-specific signatures of de novo mutations. Nat Genet. 2016;48:935–9.
Google Scholar
Goriely A, McGrath JJ, Hultman CM, Wilkie AOM, Malaspina D. Selfish spermatogonial selection”: a novel mechanism for the association between advanced paternal age and neurodevelopmental disorders. Am J Psychiatry. 2013;170:599–608.
Google Scholar
Taylor JL, Debost J-CP, Morton SU, Wigdor EM, Heyne HO, Lal D, et al. Paternal-age-related de novo mutations and risk for five disorders. Nat Commun. 2019;10:3043.
Google Scholar
Rahbari R, Wuster A, Lindsay SJ, Hardwick RJ, Alexandrov LB, Al Turki S, et al. Timing, rates and spectra of human germline mutation. Nat Genet. 2016;48:126–33.
Google Scholar
Sasani TA, Pedersen BS, Gao Z, Baird L, Przeworski M, Jorde LB, et al. Large, three-generation human families reveal post-zygotic mosaicism and variability in germline mutation accumulation. Elife. 2019;8:e46922.
Google Scholar
Ek M, Wicks S, Svensson AC, Idring S, Dalman C. Advancing paternal age and schizophrenia: the impact of delayed fatherhood. Schizophr Bull. 2015;41:708–14.
Google Scholar
Petersen L, Mortensen PB, Pedersen CB. Paternal age at birth of first child and risk of schizophrenia. Am J Psychiatry. 2011;168:82–88.
Google Scholar
Weiser M, Fenchel D, Frenkel O, Fruchter E, Burshtein S, Yehuda AB, et al. Understanding the association between advanced paternal age and schizophrenia and bipolar disorder. Psychol Med. 2020;50:431–7.
D’onofrio BM, Lahey BB, Turkheimer E, Lichtenstein P. Critical need for family-based, quasi-experimental designs in integrating genetic and social science research. Am J Public Health. 2013;103:S46–S55.
Google Scholar
Wang SH, Liu CM, Hwu HG, Hsiao CK, Chen WJ. Association of older paternal age with earlier onset among co-affected schizophrenia sib-pairs. Psychol Med. 2015;45:2205–13.
Google Scholar
Li Y, Sjölander A, Song H, Cnattingius S, Fang F, Yang Q, et al. Associations of parental and perinatal factors with subsequent risk of stress-related disorders: a nationwide cohort study with sibling comparison. Mol Psychiatry. 2022;27:1712–9.
Frans EM, Sandin S, Reichenberg A, Langstrom N, Lichtenstein P, McGrath JJ, et al. Autism risk across generations: a population-based study of advancing grandpaternal and paternal age. JAMA Psychiatry. 2013;70:516–21.
Google Scholar
Frans EM, McGrath JJ, Sandin S, Lichtenstein P, Reichenberg A, Langstrom N, et al. Advanced paternal and grandpaternal age and schizophrenia: a three-generation perspective. Schizophr Res. 2011;133:120–4.
Google Scholar
Wang S-H, Wu C-S, Hsu L-Y, Lin M-C, Chen P-C, Thompson WK, et al. Paternal age and 13 psychiatric disorders in the offspring: a population-based cohort study of 7 million children in Taiwan. Mol Psychiatry. 2022;27:5244–54.
Addington AM, Rapoport JL. The genetics of childhood-onset schizophrenia: when madness strikes the prepubescent. Curr Psychiatry Rep. 2009;11:156–61.
Google Scholar
Walsh T, McClellan JM, McCarthy SE, Addington AM, Pierce SB, Cooper GM, et al. Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science. 2008;320:539–43.
Google Scholar
Ahn K, Gotay N, Andersen T, Anvari A, Gochman P, Lee Y, et al. High rate of disease-related copy number variations in childhood onset schizophrenia. Mol Psychiatry. 2014;19:568–72.
Google Scholar
Hwu H-G, Faraone SV, Liu C-M, Chen WJ, Liu S-K, Shieh M-H, et al. Taiwan schizophrenia linkage study: the field study. Am J Med Genet B Neuropsychiatr Genet. 2005;134B:30–36.
Google Scholar
Chen WJ. Taiwan schizophrenia linkage study: Lessons learned from endophenotype‐based genome‐wide linkage scans and perspective. Am J Med Genet B Neuropsychiatr Genet. 2013;162:636–47.
Google Scholar
Diagnostic Interview for Genetic Studies. National Institute of Mental Health, Rockville, MD. 1992.
Nurnberger JI Jr., Blehar MC, Kaufmann CA, York-Cooler C, Simpson SG, Harkavy-Friedman J, et al. Diagnostic interview for genetic studies. Rationale, unique features, and training. NIMH Genetics Initiative. Arch Gen Psychiatry. 1994;51:849–59. discussion 863-844
Google Scholar
Chen WJ, Liu SK, Chang CJ, Lien YJ, Chang YH, Hwu HG. Sustained attention deficit and schizotypal personality features in nonpsychotic relatives of schizophrenic patients. Am J Psychiatry. 1998;155:1214–20.
Google Scholar
Family Interview for Genetic Studies. National Institute of Mental Health, Rockville, MD. 1992.
Hwu H-G. Descriptive psychiatric data schedules: II personal, social and clinical data schedules: establishment and reliability studies. Bull Chin Soc Neurol Psychiatry. 1985;11:47–56.
Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy‐Moonshine A, et al. From FastQ data to high‐confidence variant calls: the genome analysis toolkit best practices pipeline. Curr Protoc Bioinformatics. 2013;43:11.10. 11–11.10. 33.
Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin). 2012;6:80–92.
Google Scholar
Samocha KE, Robinson EB, Sanders SJ, Stevens C, Sabo A, McGrath LM, et al. A framework for the interpretation of de novo mutation in human disease. Nat Genet. 2014;46:944–50.
Google Scholar
Hsu JS, Wu DC, Shih SH, Liu JF, Tsai YC, Lee TL, et al. Complete genomic profiles of 1496 Taiwanese reveal curated medical insights. J Adv Res. 2024;66:197–207.
Liang K-Y, Zeger SL. Longitudinal data analysis using generalized linear models. Biometrika. 1986;73:13–22.
Google Scholar
Lee H, Cashin AG, Lamb SE, Hopewell S, Vansteelandt S, VanderWeele TJ, et al. A guideline for reporting mediation analyses of randomized trials and observational studies: the AGReMA statement. JAMA. 2021;326:1045–56.
Google Scholar
VanderWeele T. Explanation in causal inference: Methods for mediation and interaction. Oxford University Press; 2015.
Cheng C, Spiegelman D, Li F. Estimating the natural indirect effect and the mediation proportion via the product method. BMC Med Res Methodol. 2021;21:1–20.
Google Scholar
Oehlert GW. A note on the delta method. Am Stat. 1992;46:27–9.
Google Scholar
Ditlevsen S, Christensen U, Lynch J, Damsgaard MT, Keiding N. The mediation proportion: a structural equation approach for estimating the proportion of exposure effect on outcome explained by an intermediate variable. Epidemiology. 2005;16:114–20.
Google Scholar
Gratten J, Wray NR, Peyrot WJ, McGrath JJ, Visscher PM, Goddard ME. Risk of psychiatric illness from advanced paternal age is not predominantly from de novo mutations. Nat Genet. 2016;48:718–24.
Google Scholar
Perrin MC, Brown AS, Malaspina D. Aberrant epigenetic regulation could explain the relationship of paternal age to schizophrenia. Schizophr Bull. 2007;33:1270–3.
Google Scholar
Atsem S, Reichenbach J, Potabattula R, Dittrich M, Nava C, Depienne C, et al. Paternal age effects on sperm FOXK1 and KCNA7 methylation and transmission into the next generation. Hum Mol Genet. 2016;25:4996–5005.
Google Scholar
Denomme MM, Haywood ME, Parks JC, Schoolcraft WB, Katz‐Jaffe MG. The inherited methylome landscape is directly altered with paternal aging and associated with offspring neurodevelopmental disorders. Aging Cell. 2020;19:e13178.
Google Scholar
Khachadourian V, Zaks N, Lin E, Reichenberg A, Janecka M. Advanced paternal age and risk of schizophrenia in offspring–Review of epidemiological findings and potential mechanisms. Schizophr Res. 2021;233:72–9.
Google Scholar
Harris K, Pritchard JK. Rapid evolution of the human mutation spectrum. eLife. 2017;6:e24284.
Google Scholar