David, B. B. L., Abdon Mello, C., Santos Thuler, L. C. & de Melo, A. C. Overview of adult sarcoma burden and clinical pathways in Brazil. JCO Global Oncol. 8, e2100387 (2022).
Miwa, S., Yamamoto, N., Tsuchiya, H. & Sarcoma molecular pathology, diagnostics, and therapeutics. Int. J. Mol. Sci. ;24(6). (2023).
Dajsakdipon, T., Siripoon, T., Ngamphaiboon, N., Ativitavas, T. & Dejthevaporn, T. Immunotherapy and biomarkers in Sarcoma. Curr. Treat. Options Oncol. 23 (3), 415–438 (2022).
Google Scholar
Reed, D. R., Naghavi, A. & Binitie, O. Sarcoma as a model for adolescent and young adult care. J. Oncol. Pract. 15 (5), 239–247 (2019).
Google Scholar
Gage, M. M. et al. Sarcomas in the United States: recent trends and a call for improved staging. Oncotarget 10 (25), 2462–2474 (2019).
Google Scholar
Hui, J. Y. Epidemiology and etiology of sarcomas. Surg. Clin. North. Am. 96 (5), 901–914 (2016).
Google Scholar
Yang, D. et al. BCL7B is a potential novel diagnosis and prognosis biomarker for sarcomas using bioinformatics analysis. Med. (Baltim). 100 (28), e26632 (2021).
Shabani, P. et al. Role of miR-142 in the pathogenesis of osteosarcoma and its potential as therapeutic approach. J. Cell. Biochem. 120 (4), 4783–4793 (2019).
Google Scholar
Atoum, M. F., Alowaisy, D. & Deeb, A. A. Analysis of microRNA processing machinery gene DROSHA, DICER1, and XPO5 variants association with atherosclerosis: a case–control study. Biomed. Biotechnol. Res. J. (BBRJ) 8(4). (2024).
Makhlouf, S. J., Khabour, O. F., Rawashdeh, H. M. & Sakee, B. L. Polymorphisms in MicroRNA biogenesis genes and the risk of Preeclampsia in Jordan. Biomed. Biotechnol. Res. J. (BBRJ) 8(3). (2024).
Pande, A. Co-regulatory network of transcription factor and MicroRNA: a key player of gene regulation. Biomedical Biotechnol. Res. J. (BBRJ) 5(4). (2021).
Furci, L., Schena, E., Miotto, P. & Cirillo, D. M. MicroRNA induction in human macrophages associated with infection with ancient and modern TB strains. Int. J. Mycobacteriology 4(Suppl 1). (2015).
Furci, L., Schena, E., Miotto, P. & Cirillo, D. M. Alteration of human macrophages microRNA expression profile upon infection with Mycobacterium tuberculosis. Int. J. Mycobacteriology 2(3). (2013).
Alipoor, S. D., Adcock, I. M., Folkerts, G., Garssen, J. & Mortaz, E. A Bioinformatics analysis of exosomal MicroRNAs released following mycobacterial infection. Int. J. Mycobacteriol. 8(3). (2019).
Lim, H. J. & Yang, J. L. Regulatory roles and therapeutic potential of microRNA in sarcoma. Crit. Rev. Oncol. Hematol. 97, 118–130 (2016).
Google Scholar
Nazari, E. et al. Decision fusion in healthcare and medicine: a narrative review. Mhealth 8, 8 (2022).
Google Scholar
Mishra, S. K., Singh, A., Dubey, K. B., Paul, P. K. & Singh, V. Role of bioinformatics in data mining and big data analysis. In: (eds Singh, V. & Kumar, A.) Advances in Bioinformatics. Singapore: Springer Nature Singapore; 271–277. (2024).
Google Scholar
Nazari, E. et al. A comprehensive overview of decision fusion technique in healthcare: a systematic scoping review. Iran. Red Crescent Med. J. 22 (10), e30 (2020).
Google Scholar
Nazari, E., Biviji, R., Farzin, A. H., Asgari, P. & Tabesh, H. Advantages and challenges of information fusion technique for big data analysis: proposed framework. J. Biostatistics Epidemiol. (2021).
Tichanek, F., Försti, A., Hemminki, O., Hemminki, A. & Hemminki, K. Steady survival improvements in soft tissue and bone sarcoma in the nordic countries through 50 years. Cancer Epidemiol. 102449. (2023).
Soomers, V. L. M. N. et al. The route to diagnosis of sarcoma patients: results from an interview study in the Netherlands and the United Kingdom. PLoS One. 15 (12), e0243439 (2020).
Google Scholar
Weaver, R., O’Connor, M., Carey Smith, R. & Halkett, G. K. B. The complexity of diagnosing sarcoma in a timely manner: perspectives of health professionals, patients, and carers in Australia. BMC Health Serv. Res. 20, 1–10 (2020).
Golbaghi, M. P., Valizadeh Laktarashi, H. & Nazari, E. Identification of C1QTNF2 and its combination with AASS as a novel biomarker of Uterine cancer: RNA-sequencing and machine learning analysis. Iran. Biomed. J. 28 (7), 382 (2024).
Khalili-Tanha, G., Khalili-Tanha, N., Farahani, M., Rezaei-Tavirani, M. & Nazari, E. The G protein-coupled receptor-related gene signatures for diagnosis and prognosis in Glioblastoma: a deep learning model using RNA-Seq Data. Asian Pac. J. Cancer Prev. 25 (12), 4201–4210 (2024).
Google Scholar
Pourali, G. et al. Abstract 4930: identification of CBX7 and PCDHB18 as novel prognostic biomarkers of cervical cancer: RNA-sequencing and machine learning analysis. Cancer Res. 84 (6_Supplement), 4930 (2024).
Google Scholar
Rouzbahani, A. K. et al. Machine learning algorithms and biomarkers identification for pancreatic cancer diagnosis using multi-omics data integration. Pathol. – Res. Pract. 263, 155602 (2024).
Google Scholar
Nazari, E. et al. Bioinformatics analysis and machine learning approach applied to the identification of novel key genes involved in non-alcoholic fatty liver disease. Sci. Rep. 13 (1), 20489 (2023).
Google Scholar
Asadnia, A. et al. The Prognostic Value of ASPHD1 and ZBTB12 in Colorectal Cancer: a machine learning-based Integrated bioinformatics approach. Cancers 15 (17), 4300 (2023).
Google Scholar
Tu, B., Jia, Y. & Qian, J. Bioinformatics analysis identified five widely expressed genes associated with prognosis in sarcoma. Int. J. Gen. Med. :3711–3725. (2022).
Wang, X-W. et al. A 3-DNA methylation signature as a novel prognostic biomarker in patients with sarcoma by bioinformatics analysis. Medicine 100 (20), e26040 (2021).
Google Scholar
Zou, D. et al. Bioinformatics analysis reveals the competing endogenous RNA (ceRNA) coexpression network in the tumor microenvironment and prognostic biomarkers in soft tissue sarcomas. Bioengineered 12 (1), 662–672 (2021).
Google Scholar
Song, Y. et al. Identification of metastasis-associated biomarkers in synovial sarcoma using bioinformatics analysis. Front. Genet. ;11. (2020).
Hong, X., Liu, H., Chen, C., Lai, T. & Lin, J. Bioinformatics Identification and validation of aging–related molecular subtype and prognostic signature in sarcoma. Cancer Invest. 41 (5), 512–523 (2023).
Google Scholar
Zhu, N. & Hou, J. Assessing immune infiltration and the tumor microenvironment for the diagnosis and prognosis of sarcoma. Cancer Cell Int. 20, 1–11 (2020).
Google Scholar
Li, Q. et al. CDK1 and CCNB1 as potential diagnostic markers of rhabdomyosarcoma: validation following bioinformatics analysis. BMC Med. Genom. 12, 1–13 (2019).
Lu, S. et al. Bioinformatics Analysis and Validation identify CDK1 and MAD2L1 as prognostic markers of Rhabdomyosarcoma. Cancer Manage. Res. 12 (null), 12123–12136 (2020).
Google Scholar
Wysocka, M., Wysocki, O., Zufferey, M., Landers, D. & Freitas, A. A systematic review of biologically-informed deep learning models for cancer: fundamental trends for encoding and interpreting oncology data. BMC Bioinform. 24 (1), 198 (2023).
Google Scholar
Thareja, P. & Chhillar, R. S. (eds) Power of deep learning models in bioinformatics. innovations in data analytics; 2023 2023//; Singapore: Springer Nature Singapore.
Crombé, A., Roulleau-Dugage, M. & Italiano, A. The diagnosis, classification, and treatment of sarcoma in this era of artificial intelligence and immunotherapy. Cancer Commun. 42 (12), 1288–1313 (2022).
Xu, W., Hao, D., Hou, F., Zhang, D. & Wang, H. Soft tissue sarcoma: preoperative MRI-based radiomics and machine learning May be accurate predictors of histopathologic grade. Am. J. Roentgenol. 215 (4), 963–969 (2020).
Foersch, S. et al. Deep learning for diagnosis and survival prediction in soft tissue sarcoma. Ann. Oncol. 32 (9), 1178–1187 (2021).
Google Scholar
Qi, L. et al. Deciphering the role of NETosis-related signatures in the prognosis and immunotherapy of soft-tissue sarcoma using machine learning. Front. Pharmacol. ;14. (2023).
Chaber, R. et al. Predicting ewing sarcoma treatment outcome using Infrared spectroscopy and machine learning. Molecules [Internet] 24(6). (2019).
Ren, J. et al. Identification of methylation signatures and rules for sarcoma subtypes by machine learning methods. Biomed. Res. Int. 2022 (1), 5297235 (2022).
Google Scholar
van Ijzendoorn, D. G. P. et al. Machine learning analysis of gene expression data reveals novel diagnostic and prognostic biomarkers and identifies therapeutic targets for soft tissue sarcomas. PLoS Comput. Biol. 15 (2), e1006826 (2019).
Google Scholar
Ren, E., Deng, Y., Yuan, W., Wu, Z. & Zhang, G. Xie Q-q. An immune-related gene signature for determining Ewing sarcoma prognosis based on machine learning. J. Cancer Res. Clin. Oncol. 147 (1), 153–165 (2021).
Google Scholar
Ho, P. T. B., Clark, I. M. & Le, L. T. T. MicroRNA-based diagnosis and therapy. Int. J. Mol. Sci. ;23(13). (2022).
Mishra, S., Yadav, T. & Rani, V. Exploring miRNA based approaches in cancer diagnostics and therapeutics. Crit. Rev. Oncol. Hematol. 98, 12–23 (2016).
Google Scholar
Hu, Y. et al. Identification of key differentially expressed MicroRNAs in cancer patients through pan-cancer analysis. Comput. Biol. Med. 103, 183–197 (2018).
Google Scholar
Kim, T. & Croce, C. M. MicroRNA: trends in clinical trials of cancer diagnosis and therapy strategies. Exp. Mol. Med. 55 (7), 1314–1321 (2023).
Google Scholar
Condrat, C. E. et al. miRNAs as biomarkers in Disease: latest findings regarding their role in diagnosis and prognosis. Cells ;9(2). (2020).
Li, M., Shen, Y., Wang, Q. & Zhou, X. MiR-204-5p promotes apoptosis and inhibits migration of osteosarcoma via targeting EBF2. Biochimie 158, 224–232 (2019).
Google Scholar
Chen, G. et al. Potential regulatory effects of Mir-182-3p in Osteosarcoma via targeting EBF2. Biomed. Res. Int. 2019, 4897905 (2019).
Google Scholar
Ge, Q. et al. Immunological role and prognostic value of APBB1IP in Pan-cancer analysis. J. Cancer. 12 (2), 595–610 (2021).
Google Scholar
Yang, K. et al. HOOK3 suppresses proliferation and metastasis in gastric cancer via the SP1/VEGFA axis. Cell. Death Discovery. 10 (1), 33 (2024).
Google Scholar
Lou, L. Q., Zhou, W. Q., Song, X. & Chen, Z. Elevation of hsa-mir-7-5p level mediated by CtBP1-p300-AP1 complex targets ATXN1 to trigger NF-κB-dependent inflammation response. J. Mol. Med. (Berl). 101 (3), 223–235 (2023).
Google Scholar
Silva, I. L. Z., Kohata, A. A. & Shigunov, P. (eds) Modulation and Function of Pumilio Proteins in cancer. Seminars in cancer Biology (Elsevier, 2022).
Wu, Y. & Zhao, H. CTBP1 strengthens the cisplatin resistance of gastric cancer cells by upregulating RAD51 expression. Oncol. Lett. 22 (5), 810 (2021).
Google Scholar
Shi, J. et al. Synaptotagmin 1 suppresses colorectal cancer metastasis by inhibiting ERK/MAPK signaling-mediated Tumor Cell Pseudopodial formation and Migration. Cancers (Basel) ;15(21). (2023).
Gong, Y. et al. PUMILIO proteins promote colorectal cancer growth via suppressing p21. Nat. Commun. 13 (1), 1627 (2022).
Google Scholar
Liu, Z. & Lv, C. RNA binding protein PUM2 promotes hepatocellular carcinoma proliferation and apoptosis via binding to the 3’UTR of BTG3. Oncol. Lett. 24 (4), 346 (2022).
Google Scholar
Blevins, M. A., Huang, M. & Zhao, R. The role of CtBP1 in oncogenic processes and its potential as a therapeutic target. Mol. Cancer Ther. 16 (6), 981–990 (2017).
Google Scholar
Wang, Z. et al. Comprehensive identification of onco-exaptation events in bladder cancer cell lines revealed L1PA2-SYT1 as a prognosis-relevant event. Iscience ;26(12). (2023).
Kumar, R. et al. Homozygous mutation of STXBP5L explains an autosomal recessive infantile-onset neurodegenerative disorder. Hum. Mol. Genet. 24 (7), 2000–2010 (2015).
Google Scholar
Cooper, J. N. et al. Landscape of NRXN1 gene variants in phenotypic manifestations of Autism Spectrum disorder: a systematic review. J. Clin. Med. 13 (7), 2067 (2024).
Google Scholar
Riggs, E., Shakkour, Z., Anderson, C. L. & Carney, P. R. SYT1-Associated neurodevelopmental disorder: a narrative review. Child. (Basel) ;9(10). (2022).
Melland, H. et al. Expanding the genotype and phenotype spectrum of SYT1-associated neurodevelopmental disorder. Genet. Sci. 24 (4), 880–893 (2022).
Google Scholar
Wang, J. et al. Aberrant hypermethylation induced downregulation of antisense lncRNA STXBP5-AS1 and its sense gene STXBP5 correlate with tumorigenesis of glioma. Life Sci. 278, 119590 (2021).
Google Scholar
Guo, C. et al. LATS2 inhibits cell proliferation and metastasis through the Hippo signaling pathway in glioma. Oncol. Rep. 41 (5), 2753–2761 (2019).
Google Scholar
Kim, Y. et al. ELAVL2 loss promotes aggressive mesenchymal transition in glioblastoma. Npj Precision Oncol. 8 (1), 79 (2024).
Google Scholar
Zhao, G. et al. CPEB2 inhibit cell proliferation through upregulating p21 mRNA stability in glioma. Sci. Rep. 13 (1), 23103 (2023).
Google Scholar
Akhtar, M. S. LATS in cancer repression: extracting its role in hippo pathway and beyond. Gene Rep. :101826. (2023).
Pascual, R. et al. The RNA binding protein CPEB2 regulates hormone sensing in mammary gland development and luminal breast cancer. Sci. Adv. 6 (20), eaax3868 (2020).
Google Scholar
Zeng, P. et al. CPEB2 enhances cell growth and angiogenesis by upregulating ARPC5 mRNA stability in multiple myeloma. J. Orthop. Surg. Res. 18 (1), 384 (2023).
Google Scholar
Lam, C. S. et al. Identification of microRNA 885-5p as a novel regulator of tumor metastasis by targeting CPEB2 in colorectal cancer. Oncotarget 8 (16), 26858–26870 (2017).
Google Scholar
Yotsumoto, T. et al. NRXN1 as a novel potential target of antibody-drug conjugates for small cell lung cancer. Oncotarget 11 (39), 3590–3600 (2020).
Google Scholar
Lacore, M. G. et al. The glycoprotein M6a is associated with Invasiveness and radioresistance of glioblastoma stem cells. Cells 11 (14), 2128 (2022).
Google Scholar
Boudhiba, N. et al. Association between the ELAVL1 gene single nucleotide polymorphisms and the genetic susceptibility to cervical cancer by high resolution melting in a Tunisian population. Mol. Biol. Rep. 50 (3), 2559–2567 (2023).
Google Scholar
Kanzaki, H. et al. The RNA-binding protein ELAVL1 regulates Hepatitis B virus replication and growth of hepatocellular carcinoma cells. Int. J. Mol. Sci. ;23(14). (2022).
Cai, Z. et al. ELAVL1 promotes prostate cancer progression by interacting with other m6A regulators. Front. Oncol. 12, 939784 (2022).
Google Scholar
Kim, Y. & Jho, E. H. Deubiquitinase YOD1: the potent activator of YAP in hepatomegaly and liver cancer. BMB Rep. 50 (6), 281–282 (2017).
Google Scholar
Han, Z. et al. Deubiquitylase YOD1 regulates CDK1 stability and drives triple-negative breast cancer tumorigenesis. J. Exp. Clin. Cancer Res. 42 (1), 228 (2023).
Google Scholar
Zhang, Z. et al. YOD1 serves as a potential prognostic biomarker for pancreatic cancer. Cancer Cell Int. 22 (1), 203 (2022).
Google Scholar
Qiu, L. et al. circBICD2 targets miR-149-5p/IGF2BP1 axis to regulate oral squamous cell carcinoma progression. J. Oral Pathol. Med. 50 (7), 668–680 (2021).
Google Scholar
Wei, F., Ge, Y., Li, W., Wang, X. & Chen, B. Role of endothelin receptor type B (EDNRB) in lung adenocarcinoma. Thorac. Cancer. 11 (7), 1885–1890 (2020).
Google Scholar
Liu, S., Zhang, J., Zhu, J., Jiao, D. & Liu, Z. Prognostic values of EDNRB in triple–negative breast cancer. Oncol. Lett. 20 (5), 149 (2020).
Google Scholar
Hu, X., Liu, H. & Li, C. MiRNA-19b-3p downregulates the endothelin B receptor in gastric cancer cells to prevent angiogenesis and proliferation. Acta Biochim. Pol. 70 (2), 363–370 (2023).
Google Scholar
Przygodzka, P., Soboska, K., Sochacka, E., Boncela, J. & Neuromedin, U. A small peptide in the big world of cancer. Cancers (Basel) ;11(9). (2019).
Przygodzka, P. et al. Neuromedin U secreted by colorectal cancer cells promotes a tumour-supporting microenvironment. Cell. Communication Signal. 20 (1), 193 (2022).
Hodgson, K. et al. The role of GCNT1 mediated O-glycosylation in aggressive prostate cancer. Sci. Rep. 13 (1), 17031 (2023).
Google Scholar
Barkeer, S. et al. Novel role of O-glycosyltransferases GALNT3 and B3GNT3 in the self-renewal of pancreatic cancer stem cells. BMC Cancer. 18 (1), 1157 (2018).
Google Scholar
Luo, D. et al. The EMT-Related genes GALNT3 and OAS1 are associated with immune cell infiltration and poor prognosis in lung adenocarcinoma. Front. Biosci. (Landmark Ed). 28 (10), 271 (2023).
Google Scholar
Lixin, S., Wei, S., Haibin, S., Qingfu, L. & Tiemin, P. Mir-885-5p inhibits proliferation and metastasis by targeting IGF2BP1 and GALNT3 in human intrahepatic cholangiocarcinoma. Mol. Carcinog. 59 (12), 1371–1381 (2020).
Google Scholar
Chen, S. Y. et al. Spermatid perinuclear RNA-binding protein promotes UBR5-mediated proteolysis of Dicer to accelerate triple-negative breast cancer progression. Cancer Lett. 586, 216672 (2024).
Google Scholar
Salemi, M. et al. Expression of STRBP mRNA in patients with cryptorchidism and down’s syndrome. J. Endocrinol. Invest. 35 (1), 5–7 (2012).
Google Scholar
Ma, Q., Oksenberg, J. R. & Didonna, A. Epigenetic control of ataxin-1 in multiple sclerosis. Ann. Clin. Transl Neurol. 9 (8), 1186–1194 (2022).
Google Scholar
Kang, A. R., An, H. T., Ko, J., Choi, E. J. & Kang, S. Ataxin-1 is involved in tumorigenesis of cervical cancer cells via the EGFR-RAS-MAPK signaling pathway. Oncotarget 8 (55), 94606–94618 (2017).
Google Scholar
Tan, M. H. E., Li, J., Xu, H. E., Melcher, K. & Yong, E. Androgen receptor: structure, role in prostate cancer and drug discovery. Acta Pharmacol. Sin. 36 (1), 3–23 (2015).
Google Scholar
Kimura, I. et al. Functions of MAPR (membrane-associated progesterone receptor) family members as heme/steroid-binding proteins. Curr. Protein Pept. Sci. 13 (7), 687–696 (2012).
Google Scholar
Mohren, L. et al. Role of protein tyrosine phosphatase receptor type E (PTPRE) in Chemoresistant retinoblastoma. Int. J. Mol. Sci. 25 (8), 4572 (2024).
Google Scholar
Liang, J., Shi, J., Wang, N., Zhao, H. & Sun, J. Tuning the protein phosphorylation by receptor type protein tyrosine phosphatase Epsilon (PTPRE) in normal and Cancer cells. J. Cancer. 10 (1), 105–111 (2019).
Google Scholar
Chen, H. microRNA-based cancer diagnosis and therapy. Int. J. Mol. Sci. [Internet] 25(1). (2024).
Czarnecka, A., Błoński, P., Chmiel, P. & Rutkowski, P. Novel biomarkers in bone sarcomas — diagnosis, treatment selection, and clinical trials. Oncol. Clin. Pract. ;0(0). (2024).
Chakrabortty, A., Patton, D. J., Smith, B. F. & Agarwal, P. miRNAs: potential as biomarkers and therapeutic targets for cancer. Genes [Internet] ; 14(7). (2023).
Fergus, P. & Chalmers, C. Performance evaluation metrics. applied deep learning: tools,techniques, and implementationp. 115–138 (Springer, 2022).
Dinga, R., Penninx, B. W., Veltman, D. J., Schmaal, L. & Marquand, A. F. Beyond accuracy: measures for assessing machine learning models, pitfalls and guidelines. BioRxiv :743138. (2019).
Varoquaux, G. & Colliot, O. Evaluating machine learning models and their diagnostic value. Mach. Learn. Brain Disorders. 601, 30 (2023).
Google Scholar
Szklarczyk, D. et al. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47 (D1), D607–D13 (2019).
Google Scholar
Song, L., Langfelder, P. & Horvath, S. Random generalized linear model: a highly accurate and interpretable ensemble predictor. BMC Bioinform. 14 (1), 5 (2013).
Google Scholar
Mamun, A. & Paul, S. Model selection in generalized Linear models. Symmetry 15 (10), 1905 (2023).
Google Scholar
Araki, Y. et al. A validation study for the utility of serum microRNA as a diagnostic and prognostic marker in patients with osteosarcoma. Oncol. Lett. 25 (6), 1–15 (2023).
Google Scholar
Yoshida, K. et al. Downregulation of miR–10b–5p facilitates the proliferation of uterine leiomyosarcoma cells: a microRNA sequencing–based approach. Oncol. Rep. 49 (5), 86 (2023).
Google Scholar
García-Heredia, J. M. et al. A new treatment for sarcoma extracted from combination of miRNA deregulation and gene association rules. Signal. Transduct. Target. Therapy. 8 (1), 231 (2023).
Google Scholar
Xu, W., Huang, Y., Lei, Z. & Zhou, J. Mir-939-3p induces sarcoma proliferation and poor prognosis via suppressing BATF2. Front. Oncol. 14, 1346531 (2024).
Google Scholar
Lee, S. M. Role of host microRNAs in Kaposi’s sarcoma herpesvirus tumorigenesis and lytic reactivation 2023.
Pillozzi, S. et al. 110P characterization of miRNA-mRNA network in soft tissue sarcoma. ESMO Open. ;8(1). (2023).
Karras, F. S. et al. Comparative analysis of miRNA expression in dedifferentiated and well-differentiated components of dedifferentiated chondrosarcoma. Pathol. – Res. Pract. 244, 154414 (2023).
Google Scholar
Yang, F. et al. MicroRNA PC-3p-2869 regulates antler growth and inhibits proliferation and migration of human osteosarcoma and chondrosarcoma cells by targeting CDK8, EEF1A1, and NTN1. Int. J. Mol. Sci. [Internet] ; 24(13). (2023).
Li, M. H., Wu, Z. Y., Wang, Y., Chen, F. Z. & Liu, Y. Expression of miR-29 and STAT3 in osteosarcoma and its effect on proliferation regulation of osteosarcoma cells. Eur. Rev. Med. Pharmacol. Sci. 23 (17), 7275–7282 (2019).
Google Scholar