Identification of novel diagnostic and prognostic microRNAs in sarcoma on TCGA dataset: bioinformatics and machine learning approach

Identification of novel diagnostic and prognostic microRNAs in sarcoma on TCGA dataset: bioinformatics and machine learning approach Identification of novel diagnostic and prognostic microRNAs in sarcoma on TCGA dataset: bioinformatics and machine learning approach


  • David, B. B. L., Abdon Mello, C., Santos Thuler, L. C. & de Melo, A. C. Overview of adult sarcoma burden and clinical pathways in Brazil. JCO Global Oncol. 8, e2100387 (2022).

    Google Scholar 

  • Miwa, S., Yamamoto, N., Tsuchiya, H. & Sarcoma molecular pathology, diagnostics, and therapeutics. Int. J. Mol. Sci. ;24(6). (2023).

  • Dajsakdipon, T., Siripoon, T., Ngamphaiboon, N., Ativitavas, T. & Dejthevaporn, T. Immunotherapy and biomarkers in Sarcoma. Curr. Treat. Options Oncol. 23 (3), 415–438 (2022).

    PubMed 

    Google Scholar 

  • Reed, D. R., Naghavi, A. & Binitie, O. Sarcoma as a model for adolescent and young adult care. J. Oncol. Pract. 15 (5), 239–247 (2019).

    PubMed 
    MATH 

    Google Scholar 

  • Gage, M. M. et al. Sarcomas in the United States: recent trends and a call for improved staging. Oncotarget 10 (25), 2462–2474 (2019).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Hui, J. Y. Epidemiology and etiology of sarcomas. Surg. Clin. North. Am. 96 (5), 901–914 (2016).

    PubMed 
    MATH 

    Google Scholar 

  • Yang, D. et al. BCL7B is a potential novel diagnosis and prognosis biomarker for sarcomas using bioinformatics analysis. Med. (Baltim). 100 (28), e26632 (2021).

    Google Scholar 

  • Shabani, P. et al. Role of miR-142 in the pathogenesis of osteosarcoma and its potential as therapeutic approach. J. Cell. Biochem. 120 (4), 4783–4793 (2019).

    ADS 
    MathSciNet 
    PubMed 
    MATH 

    Google Scholar 

  • Atoum, M. F., Alowaisy, D. & Deeb, A. A. Analysis of microRNA processing machinery gene DROSHA, DICER1, and XPO5 variants association with atherosclerosis: a case–control study. Biomed. Biotechnol. Res. J. (BBRJ) 8(4). (2024).

  • Makhlouf, S. J., Khabour, O. F., Rawashdeh, H. M. & Sakee, B. L. Polymorphisms in MicroRNA biogenesis genes and the risk of Preeclampsia in Jordan. Biomed. Biotechnol. Res. J. (BBRJ) 8(3). (2024).

  • Pande, A. Co-regulatory network of transcription factor and MicroRNA: a key player of gene regulation. Biomedical Biotechnol. Res. J. (BBRJ) 5(4). (2021).

  • Furci, L., Schena, E., Miotto, P. & Cirillo, D. M. MicroRNA induction in human macrophages associated with infection with ancient and modern TB strains. Int. J. Mycobacteriology 4(Suppl 1). (2015).

  • Furci, L., Schena, E., Miotto, P. & Cirillo, D. M. Alteration of human macrophages microRNA expression profile upon infection with Mycobacterium tuberculosis. Int. J. Mycobacteriology 2(3). (2013).

  • Alipoor, S. D., Adcock, I. M., Folkerts, G., Garssen, J. & Mortaz, E. A Bioinformatics analysis of exosomal MicroRNAs released following mycobacterial infection. Int. J. Mycobacteriol. 8(3). (2019).

  • Lim, H. J. & Yang, J. L. Regulatory roles and therapeutic potential of microRNA in sarcoma. Crit. Rev. Oncol. Hematol. 97, 118–130 (2016).

    PubMed 
    MATH 

    Google Scholar 

  • Nazari, E. et al. Decision fusion in healthcare and medicine: a narrative review. Mhealth 8, 8 (2022).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Mishra, S. K., Singh, A., Dubey, K. B., Paul, P. K. & Singh, V. Role of bioinformatics in data mining and big data analysis. In: (eds Singh, V. & Kumar, A.) Advances in Bioinformatics. Singapore: Springer Nature Singapore; 271–277. (2024).

    MATH 

    Google Scholar 

  • Nazari, E. et al. A comprehensive overview of decision fusion technique in healthcare: a systematic scoping review. Iran. Red Crescent Med. J. 22 (10), e30 (2020).

    MATH 

    Google Scholar 

  • Nazari, E., Biviji, R., Farzin, A. H., Asgari, P. & Tabesh, H. Advantages and challenges of information fusion technique for big data analysis: proposed framework. J. Biostatistics Epidemiol. (2021).

  • Tichanek, F., Försti, A., Hemminki, O., Hemminki, A. & Hemminki, K. Steady survival improvements in soft tissue and bone sarcoma in the nordic countries through 50 years. Cancer Epidemiol. 102449. (2023).

  • Soomers, V. L. M. N. et al. The route to diagnosis of sarcoma patients: results from an interview study in the Netherlands and the United Kingdom. PLoS One. 15 (12), e0243439 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Weaver, R., O’Connor, M., Carey Smith, R. & Halkett, G. K. B. The complexity of diagnosing sarcoma in a timely manner: perspectives of health professionals, patients, and carers in Australia. BMC Health Serv. Res. 20, 1–10 (2020).

    Google Scholar 

  • Golbaghi, M. P., Valizadeh Laktarashi, H. & Nazari, E. Identification of C1QTNF2 and its combination with AASS as a novel biomarker of Uterine cancer: RNA-sequencing and machine learning analysis. Iran. Biomed. J. 28 (7), 382 (2024).

    Google Scholar 

  • Khalili-Tanha, G., Khalili-Tanha, N., Farahani, M., Rezaei-Tavirani, M. & Nazari, E. The G protein-coupled receptor-related gene signatures for diagnosis and prognosis in Glioblastoma: a deep learning model using RNA-Seq Data. Asian Pac. J. Cancer Prev. 25 (12), 4201–4210 (2024).

    PubMed 

    Google Scholar 

  • Pourali, G. et al. Abstract 4930: identification of CBX7 and PCDHB18 as novel prognostic biomarkers of cervical cancer: RNA-sequencing and machine learning analysis. Cancer Res. 84 (6_Supplement), 4930 (2024).

    MathSciNet 
    MATH 

    Google Scholar 

  • Rouzbahani, A. K. et al. Machine learning algorithms and biomarkers identification for pancreatic cancer diagnosis using multi-omics data integration. Pathol. – Res. Pract. 263, 155602 (2024).

    PubMed 
    MATH 

    Google Scholar 

  • Nazari, E. et al. Bioinformatics analysis and machine learning approach applied to the identification of novel key genes involved in non-alcoholic fatty liver disease. Sci. Rep. 13 (1), 20489 (2023).

    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Asadnia, A. et al. The Prognostic Value of ASPHD1 and ZBTB12 in Colorectal Cancer: a machine learning-based Integrated bioinformatics approach. Cancers 15 (17), 4300 (2023).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Tu, B., Jia, Y. & Qian, J. Bioinformatics analysis identified five widely expressed genes associated with prognosis in sarcoma. Int. J. Gen. Med. :3711–3725. (2022).

  • Wang, X-W. et al. A 3-DNA methylation signature as a novel prognostic biomarker in patients with sarcoma by bioinformatics analysis. Medicine 100 (20), e26040 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zou, D. et al. Bioinformatics analysis reveals the competing endogenous RNA (ceRNA) coexpression network in the tumor microenvironment and prognostic biomarkers in soft tissue sarcomas. Bioengineered 12 (1), 662–672 (2021).

    PubMed Central 
    MATH 

    Google Scholar 

  • Song, Y. et al. Identification of metastasis-associated biomarkers in synovial sarcoma using bioinformatics analysis. Front. Genet. ;11. (2020).

  • Hong, X., Liu, H., Chen, C., Lai, T. & Lin, J. Bioinformatics Identification and validation of aging–related molecular subtype and prognostic signature in sarcoma. Cancer Invest. 41 (5), 512–523 (2023).

    PubMed 
    MATH 

    Google Scholar 

  • Zhu, N. & Hou, J. Assessing immune infiltration and the tumor microenvironment for the diagnosis and prognosis of sarcoma. Cancer Cell Int. 20, 1–11 (2020).

    MATH 

    Google Scholar 

  • Li, Q. et al. CDK1 and CCNB1 as potential diagnostic markers of rhabdomyosarcoma: validation following bioinformatics analysis. BMC Med. Genom. 12, 1–13 (2019).

    Google Scholar 

  • Lu, S. et al. Bioinformatics Analysis and Validation identify CDK1 and MAD2L1 as prognostic markers of Rhabdomyosarcoma. Cancer Manage. Res. 12 (null), 12123–12136 (2020).

    MathSciNet 

    Google Scholar 

  • Wysocka, M., Wysocki, O., Zufferey, M., Landers, D. & Freitas, A. A systematic review of biologically-informed deep learning models for cancer: fundamental trends for encoding and interpreting oncology data. BMC Bioinform. 24 (1), 198 (2023).

    MATH 

    Google Scholar 

  • Thareja, P. & Chhillar, R. S. (eds) Power of deep learning models in bioinformatics. innovations in data analytics; 2023 2023//; Singapore: Springer Nature Singapore.

  • Crombé, A., Roulleau-Dugage, M. & Italiano, A. The diagnosis, classification, and treatment of sarcoma in this era of artificial intelligence and immunotherapy. Cancer Commun. 42 (12), 1288–1313 (2022).

    Google Scholar 

  • Xu, W., Hao, D., Hou, F., Zhang, D. & Wang, H. Soft tissue sarcoma: preoperative MRI-based radiomics and machine learning May be accurate predictors of histopathologic grade. Am. J. Roentgenol. 215 (4), 963–969 (2020).

    Google Scholar 

  • Foersch, S. et al. Deep learning for diagnosis and survival prediction in soft tissue sarcoma. Ann. Oncol. 32 (9), 1178–1187 (2021).

    PubMed 
    MATH 

    Google Scholar 

  • Qi, L. et al. Deciphering the role of NETosis-related signatures in the prognosis and immunotherapy of soft-tissue sarcoma using machine learning. Front. Pharmacol. ;14. (2023).

  • Chaber, R. et al. Predicting ewing sarcoma treatment outcome using Infrared spectroscopy and machine learning. Molecules [Internet] 24(6). (2019).

  • Ren, J. et al. Identification of methylation signatures and rules for sarcoma subtypes by machine learning methods. Biomed. Res. Int. 2022 (1), 5297235 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • van Ijzendoorn, D. G. P. et al. Machine learning analysis of gene expression data reveals novel diagnostic and prognostic biomarkers and identifies therapeutic targets for soft tissue sarcomas. PLoS Comput. Biol. 15 (2), e1006826 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ren, E., Deng, Y., Yuan, W., Wu, Z. & Zhang, G. Xie Q-q. An immune-related gene signature for determining Ewing sarcoma prognosis based on machine learning. J. Cancer Res. Clin. Oncol. 147 (1), 153–165 (2021).

    PubMed 

    Google Scholar 

  • Ho, P. T. B., Clark, I. M. & Le, L. T. T. MicroRNA-based diagnosis and therapy. Int. J. Mol. Sci. ;23(13). (2022).

  • Mishra, S., Yadav, T. & Rani, V. Exploring miRNA based approaches in cancer diagnostics and therapeutics. Crit. Rev. Oncol. Hematol. 98, 12–23 (2016).

    PubMed 
    MATH 

    Google Scholar 

  • Hu, Y. et al. Identification of key differentially expressed MicroRNAs in cancer patients through pan-cancer analysis. Comput. Biol. Med. 103, 183–197 (2018).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Kim, T. & Croce, C. M. MicroRNA: trends in clinical trials of cancer diagnosis and therapy strategies. Exp. Mol. Med. 55 (7), 1314–1321 (2023).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Condrat, C. E. et al. miRNAs as biomarkers in Disease: latest findings regarding their role in diagnosis and prognosis. Cells ;9(2). (2020).

  • Li, M., Shen, Y., Wang, Q. & Zhou, X. MiR-204-5p promotes apoptosis and inhibits migration of osteosarcoma via targeting EBF2. Biochimie 158, 224–232 (2019).

    PubMed 
    MATH 

    Google Scholar 

  • Chen, G. et al. Potential regulatory effects of Mir-182-3p in Osteosarcoma via targeting EBF2. Biomed. Res. Int. 2019, 4897905 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ge, Q. et al. Immunological role and prognostic value of APBB1IP in Pan-cancer analysis. J. Cancer. 12 (2), 595–610 (2021).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Yang, K. et al. HOOK3 suppresses proliferation and metastasis in gastric cancer via the SP1/VEGFA axis. Cell. Death Discovery. 10 (1), 33 (2024).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lou, L. Q., Zhou, W. Q., Song, X. & Chen, Z. Elevation of hsa-mir-7-5p level mediated by CtBP1-p300-AP1 complex targets ATXN1 to trigger NF-κB-dependent inflammation response. J. Mol. Med. (Berl). 101 (3), 223–235 (2023).

    PubMed 

    Google Scholar 

  • Silva, I. L. Z., Kohata, A. A. & Shigunov, P. (eds) Modulation and Function of Pumilio Proteins in cancer. Seminars in cancer Biology (Elsevier, 2022).

  • Wu, Y. & Zhao, H. CTBP1 strengthens the cisplatin resistance of gastric cancer cells by upregulating RAD51 expression. Oncol. Lett. 22 (5), 810 (2021).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Shi, J. et al. Synaptotagmin 1 suppresses colorectal cancer metastasis by inhibiting ERK/MAPK signaling-mediated Tumor Cell Pseudopodial formation and Migration. Cancers (Basel) ;15(21). (2023).

  • Gong, Y. et al. PUMILIO proteins promote colorectal cancer growth via suppressing p21. Nat. Commun. 13 (1), 1627 (2022).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, Z. & Lv, C. RNA binding protein PUM2 promotes hepatocellular carcinoma proliferation and apoptosis via binding to the 3’UTR of BTG3. Oncol. Lett. 24 (4), 346 (2022).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Blevins, M. A., Huang, M. & Zhao, R. The role of CtBP1 in oncogenic processes and its potential as a therapeutic target. Mol. Cancer Ther. 16 (6), 981–990 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, Z. et al. Comprehensive identification of onco-exaptation events in bladder cancer cell lines revealed L1PA2-SYT1 as a prognosis-relevant event. Iscience ;26(12). (2023).

  • Kumar, R. et al. Homozygous mutation of STXBP5L explains an autosomal recessive infantile-onset neurodegenerative disorder. Hum. Mol. Genet. 24 (7), 2000–2010 (2015).

    PubMed 
    MATH 

    Google Scholar 

  • Cooper, J. N. et al. Landscape of NRXN1 gene variants in phenotypic manifestations of Autism Spectrum disorder: a systematic review. J. Clin. Med. 13 (7), 2067 (2024).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Riggs, E., Shakkour, Z., Anderson, C. L. & Carney, P. R. SYT1-Associated neurodevelopmental disorder: a narrative review. Child. (Basel) ;9(10). (2022).

  • Melland, H. et al. Expanding the genotype and phenotype spectrum of SYT1-associated neurodevelopmental disorder. Genet. Sci. 24 (4), 880–893 (2022).

    MATH 

    Google Scholar 

  • Wang, J. et al. Aberrant hypermethylation induced downregulation of antisense lncRNA STXBP5-AS1 and its sense gene STXBP5 correlate with tumorigenesis of glioma. Life Sci. 278, 119590 (2021).

    PubMed 

    Google Scholar 

  • Guo, C. et al. LATS2 inhibits cell proliferation and metastasis through the Hippo signaling pathway in glioma. Oncol. Rep. 41 (5), 2753–2761 (2019).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Kim, Y. et al. ELAVL2 loss promotes aggressive mesenchymal transition in glioblastoma. Npj Precision Oncol. 8 (1), 79 (2024).

    MATH 

    Google Scholar 

  • Zhao, G. et al. CPEB2 inhibit cell proliferation through upregulating p21 mRNA stability in glioma. Sci. Rep. 13 (1), 23103 (2023).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Akhtar, M. S. LATS in cancer repression: extracting its role in hippo pathway and beyond. Gene Rep. :101826. (2023).

  • Pascual, R. et al. The RNA binding protein CPEB2 regulates hormone sensing in mammary gland development and luminal breast cancer. Sci. Adv. 6 (20), eaax3868 (2020).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zeng, P. et al. CPEB2 enhances cell growth and angiogenesis by upregulating ARPC5 mRNA stability in multiple myeloma. J. Orthop. Surg. Res. 18 (1), 384 (2023).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Lam, C. S. et al. Identification of microRNA 885-5p as a novel regulator of tumor metastasis by targeting CPEB2 in colorectal cancer. Oncotarget 8 (16), 26858–26870 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Yotsumoto, T. et al. NRXN1 as a novel potential target of antibody-drug conjugates for small cell lung cancer. Oncotarget 11 (39), 3590–3600 (2020).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Lacore, M. G. et al. The glycoprotein M6a is associated with Invasiveness and radioresistance of glioblastoma stem cells. Cells 11 (14), 2128 (2022).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Boudhiba, N. et al. Association between the ELAVL1 gene single nucleotide polymorphisms and the genetic susceptibility to cervical cancer by high resolution melting in a Tunisian population. Mol. Biol. Rep. 50 (3), 2559–2567 (2023).

    PubMed 
    MATH 

    Google Scholar 

  • Kanzaki, H. et al. The RNA-binding protein ELAVL1 regulates Hepatitis B virus replication and growth of hepatocellular carcinoma cells. Int. J. Mol. Sci. ;23(14). (2022).

  • Cai, Z. et al. ELAVL1 promotes prostate cancer progression by interacting with other m6A regulators. Front. Oncol. 12, 939784 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, Y. & Jho, E. H. Deubiquitinase YOD1: the potent activator of YAP in hepatomegaly and liver cancer. BMB Rep. 50 (6), 281–282 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Han, Z. et al. Deubiquitylase YOD1 regulates CDK1 stability and drives triple-negative breast cancer tumorigenesis. J. Exp. Clin. Cancer Res. 42 (1), 228 (2023).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Zhang, Z. et al. YOD1 serves as a potential prognostic biomarker for pancreatic cancer. Cancer Cell Int. 22 (1), 203 (2022).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Qiu, L. et al. circBICD2 targets miR-149-5p/IGF2BP1 axis to regulate oral squamous cell carcinoma progression. J. Oral Pathol. Med. 50 (7), 668–680 (2021).

    PubMed 

    Google Scholar 

  • Wei, F., Ge, Y., Li, W., Wang, X. & Chen, B. Role of endothelin receptor type B (EDNRB) in lung adenocarcinoma. Thorac. Cancer. 11 (7), 1885–1890 (2020).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Liu, S., Zhang, J., Zhu, J., Jiao, D. & Liu, Z. Prognostic values of EDNRB in triple–negative breast cancer. Oncol. Lett. 20 (5), 149 (2020).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Hu, X., Liu, H. & Li, C. MiRNA-19b-3p downregulates the endothelin B receptor in gastric cancer cells to prevent angiogenesis and proliferation. Acta Biochim. Pol. 70 (2), 363–370 (2023).

    PubMed 
    MATH 

    Google Scholar 

  • Przygodzka, P., Soboska, K., Sochacka, E., Boncela, J. & Neuromedin, U. A small peptide in the big world of cancer. Cancers (Basel) ;11(9). (2019).

  • Przygodzka, P. et al. Neuromedin U secreted by colorectal cancer cells promotes a tumour-supporting microenvironment. Cell. Communication Signal. 20 (1), 193 (2022).

    Google Scholar 

  • Hodgson, K. et al. The role of GCNT1 mediated O-glycosylation in aggressive prostate cancer. Sci. Rep. 13 (1), 17031 (2023).

    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Barkeer, S. et al. Novel role of O-glycosyltransferases GALNT3 and B3GNT3 in the self-renewal of pancreatic cancer stem cells. BMC Cancer. 18 (1), 1157 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Luo, D. et al. The EMT-Related genes GALNT3 and OAS1 are associated with immune cell infiltration and poor prognosis in lung adenocarcinoma. Front. Biosci. (Landmark Ed). 28 (10), 271 (2023).

    PubMed 
    MATH 

    Google Scholar 

  • Lixin, S., Wei, S., Haibin, S., Qingfu, L. & Tiemin, P. Mir-885-5p inhibits proliferation and metastasis by targeting IGF2BP1 and GALNT3 in human intrahepatic cholangiocarcinoma. Mol. Carcinog. 59 (12), 1371–1381 (2020).

    PubMed 

    Google Scholar 

  • Chen, S. Y. et al. Spermatid perinuclear RNA-binding protein promotes UBR5-mediated proteolysis of Dicer to accelerate triple-negative breast cancer progression. Cancer Lett. 586, 216672 (2024).

    PubMed 

    Google Scholar 

  • Salemi, M. et al. Expression of STRBP mRNA in patients with cryptorchidism and down’s syndrome. J. Endocrinol. Invest. 35 (1), 5–7 (2012).

    MathSciNet 
    PubMed 
    MATH 

    Google Scholar 

  • Ma, Q., Oksenberg, J. R. & Didonna, A. Epigenetic control of ataxin-1 in multiple sclerosis. Ann. Clin. Transl Neurol. 9 (8), 1186–1194 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kang, A. R., An, H. T., Ko, J., Choi, E. J. & Kang, S. Ataxin-1 is involved in tumorigenesis of cervical cancer cells via the EGFR-RAS-MAPK signaling pathway. Oncotarget 8 (55), 94606–94618 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Tan, M. H. E., Li, J., Xu, H. E., Melcher, K. & Yong, E. Androgen receptor: structure, role in prostate cancer and drug discovery. Acta Pharmacol. Sin. 36 (1), 3–23 (2015).

    PubMed 
    MATH 

    Google Scholar 

  • Kimura, I. et al. Functions of MAPR (membrane-associated progesterone receptor) family members as heme/steroid-binding proteins. Curr. Protein Pept. Sci. 13 (7), 687–696 (2012).

    PubMed 

    Google Scholar 

  • Mohren, L. et al. Role of protein tyrosine phosphatase receptor type E (PTPRE) in Chemoresistant retinoblastoma. Int. J. Mol. Sci. 25 (8), 4572 (2024).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Liang, J., Shi, J., Wang, N., Zhao, H. & Sun, J. Tuning the protein phosphorylation by receptor type protein tyrosine phosphatase Epsilon (PTPRE) in normal and Cancer cells. J. Cancer. 10 (1), 105–111 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, H. microRNA-based cancer diagnosis and therapy. Int. J. Mol. Sci. [Internet] 25(1). (2024).

  • Czarnecka, A., Błoński, P., Chmiel, P. & Rutkowski, P. Novel biomarkers in bone sarcomas — diagnosis, treatment selection, and clinical trials. Oncol. Clin. Pract. ;0(0). (2024).

  • Chakrabortty, A., Patton, D. J., Smith, B. F. & Agarwal, P. miRNAs: potential as biomarkers and therapeutic targets for cancer. Genes [Internet] ; 14(7). (2023).

  • Fergus, P. & Chalmers, C. Performance evaluation metrics. applied deep learning: tools,techniques, and implementationp. 115–138 (Springer, 2022).

  • Dinga, R., Penninx, B. W., Veltman, D. J., Schmaal, L. & Marquand, A. F. Beyond accuracy: measures for assessing machine learning models, pitfalls and guidelines. BioRxiv :743138. (2019).

  • Varoquaux, G. & Colliot, O. Evaluating machine learning models and their diagnostic value. Mach. Learn. Brain Disorders. 601, 30 (2023).

    MATH 

    Google Scholar 

  • Szklarczyk, D. et al. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47 (D1), D607–D13 (2019).

    PubMed 

    Google Scholar 

  • Song, L., Langfelder, P. & Horvath, S. Random generalized linear model: a highly accurate and interpretable ensemble predictor. BMC Bioinform. 14 (1), 5 (2013).

    MATH 

    Google Scholar 

  • Mamun, A. & Paul, S. Model selection in generalized Linear models. Symmetry 15 (10), 1905 (2023).

    ADS 
    MATH 

    Google Scholar 

  • Araki, Y. et al. A validation study for the utility of serum microRNA as a diagnostic and prognostic marker in patients with osteosarcoma. Oncol. Lett. 25 (6), 1–15 (2023).

    ADS 
    MATH 

    Google Scholar 

  • Yoshida, K. et al. Downregulation of miR–10b–5p facilitates the proliferation of uterine leiomyosarcoma cells: a microRNA sequencing–based approach. Oncol. Rep. 49 (5), 86 (2023).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • García-Heredia, J. M. et al. A new treatment for sarcoma extracted from combination of miRNA deregulation and gene association rules. Signal. Transduct. Target. Therapy. 8 (1), 231 (2023).

    MATH 

    Google Scholar 

  • Xu, W., Huang, Y., Lei, Z. & Zhou, J. Mir-939-3p induces sarcoma proliferation and poor prognosis via suppressing BATF2. Front. Oncol. 14, 1346531 (2024).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, S. M. Role of host microRNAs in Kaposi’s sarcoma herpesvirus tumorigenesis and lytic reactivation 2023.

  • Pillozzi, S. et al. 110P characterization of miRNA-mRNA network in soft tissue sarcoma. ESMO Open. ;8(1). (2023).

  • Karras, F. S. et al. Comparative analysis of miRNA expression in dedifferentiated and well-differentiated components of dedifferentiated chondrosarcoma. Pathol. – Res. Pract. 244, 154414 (2023).

    PubMed 
    MATH 

    Google Scholar 

  • Yang, F. et al. MicroRNA PC-3p-2869 regulates antler growth and inhibits proliferation and migration of human osteosarcoma and chondrosarcoma cells by targeting CDK8, EEF1A1, and NTN1. Int. J. Mol. Sci. [Internet] ; 24(13). (2023).

  • Li, M. H., Wu, Z. Y., Wang, Y., Chen, F. Z. & Liu, Y. Expression of miR-29 and STAT3 in osteosarcoma and its effect on proliferation regulation of osteosarcoma cells. Eur. Rev. Med. Pharmacol. Sci. 23 (17), 7275–7282 (2019).

    PubMed 
    MATH 

    Google Scholar 




  • Source link

    Add a comment

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Keep Up to Date with the Most Important News

    By pressing the Subscribe button, you confirm that you have read and are agreeing to our Privacy Policy and Terms of Use