Genersch, E. Honey bee pathology: Current threats to honey bees and beekeeping. Appl. Microbiol. Biotechnol. 87, 87–97 (2010).
Google Scholar
Abou-Shaara, H. F., Owayss, A. A., Ibrahim, Y. Y. & Basuny, N. K. A review of impacts of temperature and relative humidity on various activities of honey bees. Insect. Soc. 64, 455–463 (2017).
Google Scholar
Giannini, T. C. et al. Crop pollinators in Brazil: A review of reported interactions. Apidologie 46, 209–223 (2015).
Google Scholar
Hristov, P., Shumkova, R., Palova, N. & Neov, B. Factors associated with honey bee colony losses: A mini-review. Vet. Sci. 7, 166 (2020).
Google Scholar
Szentgyörgyi, H., Czekońska, K. & Tofilski, A. Honey bees are larger and live longer after developing at low temperature. J. Therm. Biol. 78, 219–226 (2018).
Google Scholar
Butolo, N. P., Azevedo, P., Alencar, L. D., Malaspina, O. & Nocelli, R. C. F. Impact of low temperatures on the immune system of honeybees. J. Therm. Biol. 101, 103082 (2021).
Google Scholar
Wang, Q. et al. Low-temperature stress during capped brood stage increases pupal mortality, misorientation and adult mortality in honey bees. PLoS One 11, e0154547 (2016).
Google Scholar
Steinhauer, N., vanEngelsdorp, D. & Saegerman, C. Prioritizing changes in management practices associated with reduced winter honey bee colony losses for US beekeepers. Sci. Total. Environ. 753, 141629 (2021).
Google Scholar
Aurori, C. M. et al. What is the main driver of ageing in long-lived winter honeybees: Antioxidant enzymes, innate immunity, or vitellogenin?. J. Gerontol. – Ser. A. Biol. Sci. Med. Sci. 69, 633–639 (2014).
Google Scholar
Stabentheiner, A., Pressl, H., Papst, T., Hrassnigg, N. & Crailsheim, K. Endothermic heat production in honeybee winter clusters. J. Exp. Biol. 206, 353–358 (2003).
Google Scholar
Degrandi-Hoffman, G., Graham, H., Ahumada, F., Smart, M. & Ziolkowski, N. The economics of honey bee (Hymenoptera: Apidae) management and overwintering strategies for colonies used to pollinate almonds. J. Econ. Entomol. 112, 2524–2533 (2019).
Google Scholar
Owens, C. D., States, U. & Service, A. R. The thermology of wintering honey bee colonies. 171857 Preprint at (1971).
Meikle, W. G., Corby-Harris, V., Ricigliano, V., Snyder, L. & Weiss, M. Cold storage as part of a Varroa management strategy: Effects on honey bee colony performance, mite levels and stress biomarkers. Sci. Rep. 13(1), 15 (2023).
Google Scholar
Coulibaly, K. A. S., Majeed, M. Z., Sayed, S. & Yeo, K. Simulated climate warming influenced colony microclimatic conditions and gut bacterial abundance of honeybee subspecies apis mellifera ligustica and a mellifera sinisxinyuan. J. Apic. Sci. 66(15), 27 (2022).
Zhang, Y. et al. Mediating a host cell signaling pathway linked to overwinter mortality offers a promising therapeutic approach for improving bee health. J. Adv. Res. 53, 99–114 (2023).
Google Scholar
Xu, K., Niu, Q., Zhao, H., Du, Y. & Jiang, Y. Transcriptomic analysis to uncover genes affecting cold resistance in the Chinese honey bee (Apis cerana cerana). PLoS One 12, e0179922 (2017).
Google Scholar
Raymann, K. & Moran, N. A. The role of the gut microbiome in health and disease of adult honey bee workers. Curr.Opin. Insect Sci. Preprint at https://doi.org/10.1016/j.cois.2018.02.012 (2018).
Zheng, H., Steele, M. I., Leonard, S. P., Motta, E. V. S. & Moran, N. A. Honey bees as models for gut microbiota research. Lab Anim. (NY) 47, 317–325 (2018).
Google Scholar
Engel, P. et al. The bee microbiome: Impact on bee health and model for evolution and ecology of host-microbe interactions. Am. Soc. Microbiol. https://doi.org/10.1128/mBio.02164-15 (2016).
Google Scholar
Kwong, W. K. & Moran, N. A. Gut microbial communities of social bees. Nat. Rev. Microbiol. 14, 374 (2016).
Google Scholar
Martinson, V. G., Moy, J. & Moran, N. A. Establishment of characteristic gut bacteria during development of the honeybee worker. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.07810-11 (2012).
Google Scholar
Bonilla-Rosso, G. & Engel, P. Functional roles and metabolic niches in the honey bee gut microbiota. Curr. Opin. Microbiol. 43, 69–76 (2018).
Google Scholar
Engel, P. & Moran, N. A. Functional and evolutionary insights into the simple yet specific gut microbiota of the honey bee from metagenomic analysis. Gut. Microb. 4, 60–65 (2013).
Google Scholar
Engel, P. & Moran, N. A. The gut microbiota of insects – diversity in structure and function. FEMS Microbiol. Rev. 37, 699–735 (2013).
Google Scholar
Ludvigsen, J. et al. Shifts in the midgut/pyloric microbiota composition within a honey bee apiary throughout a season. Microb. Environ. 30, 235–244 (2015).
Google Scholar
Almeida, E. L. et al. Geographical and seasonal analysis of the honeybee microbiome. Microb. Ecol. 85, 765–778 (2023).
Google Scholar
Castelli, L., Branchiccela, B., Romero, H., Zunino, P. & Antúnez, K. Seasonal dynamics of the honey bee gut microbiota in colonies under subtropical climate: Seasonal dynamics of honey bee gut microbiota. Microb. Ecol. 83, 492–500 (2022).
Google Scholar
Kešnerová, L. et al. Gut microbiota structure differs between honeybees in winter and summer. ISME J. 14(801), 814 (2019).
Google Scholar
Hammer, T. J., Le, E., Moran, N. A. & Hammer, T. J. Thermal niches of specialized gut symbionts: the case of social bees. Proc. R. Soc. B. 288, 1944 (2021).
Google Scholar
Russell, K. A. & McFrederick, Q. S. Elevated temperature may affect nectar microbes, nectar sugars, and bumble bee foraging preference. Microb. Ecol. 84, 473–482 (2022).
Google Scholar
Ellegaard, K. M., Suenami, S., Miyazaki, R. & Engel, P. Vast differences in strain-level diversity in the gut microbiota of two closely related honey bee species. Curr. Biol. 30, 2520-2531.e7 (2020).
Google Scholar
Wu, J. et al. Honey bee genetics shape the strain-level structure of gut microbiota in social transmission. Microbiome 9, 1–19 (2021).
Google Scholar
Su, Q. et al. Significant compositional and functional variation reveals the patterns of gut microbiota evolution among the widespread Asian honeybee populations. Front. Microbiol. 13, 934459 (2022).
Google Scholar
Wu, Y. et al. Genetic divergence and functional convergence of gut bacteria between the Eastern honey bee APIS cerana and the Western honey bee Apis mellifera. J. Adv. Res. 37, 19–31 (2022).
Google Scholar
Khan, K. A. et al. Gut microbial diversity in Apis cerana indica and Apis florea colonies: A comparative study. Front. Vet. Sci. 10, 1149876 (2023).
Google Scholar
Maes, P. W., Rodrigues, P. A. P., Oliver, R., Mott, B. M. & Anderson, K. E. Diet-related gut bacterial dysbiosis correlates with impaired development, increased mortality and Nosema disease in the honeybee (Apis mellifera). Mol. Ecol. 25, 5439–5450 (2016).
Google Scholar
McFrederick, Q. S. & Rehan, S. M. Characterization of pollen and bacterial community composition in brood provisions of a small carpenter bee. Mol. Ecol. 25, 2302–2311 (2016).
Google Scholar
Russell, K. A. & McFrederick, Q. S. Floral nectar microbial communities exhibit seasonal shifts associated with extreme heat: Potential implications for climate change and plant-pollinator interactions. Front. Microbiol. 13, 3107 (2022).
Google Scholar
Bates, D., Mächler, M., Zurich, E., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. https://doi.org/10.18637/jss.v067.i01 (2015).
Google Scholar
Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: Tests in Linear Mixed Effects Models. J. Stat. Softw. 82, 1–26 (2017).
Google Scholar
R core team. R: The R Project for Statistical Computing. https://www.r-project.org/ (2022).
Harrison, X. A. et al. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ https://doi.org/10.7717/peerj.4794 (2018).
Google Scholar
Meurisse, N., Pawson, S. M. & Somchit, C. Bark beetles on pine logs: forecasting winter colonisation dynamics based on trap catches and temperature records. J. Pest. Sci. 2004(94), 1357–1373 (2021).
Google Scholar
Hartig. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. https://cran.r-project.org/web/packages/DHARMa/vignettes/DHARMa.html (2018).
Lüdecke, D. ggeffects: Tidy data frames of marginal effects from regression models. J. Open Sour. Softw. 3, 772 (2018).
Google Scholar
Russell, V. Lenth. Package ‘emmeans’ Type Package Title Estimated Marginal Means, aka Least-Squares Means. Am. Stat. https://doi.org/10.1080/00031305.1980.10483031 (2024).
Google Scholar
Bleau, N., Bouslama, S., Giovenazzo, P. & Derome, N. Dynamics of the honeybee (Apis mellifera) gut microbiota throughout the overwintering period in Canada. Microorganisms 8, 1146 (2020).
Google Scholar
Bustin, S. A. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J. Mol. Endocrinol. 29 23 39 Preprint at https://doi.org/10.1677/jme.0.0290023 (2002).
Zheng, J. et al. A taxonomic note on the genus Lactobacillus: description of 23 novel genera, emended description of the genus Lactobacillus beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 70, 2782–2858 (2020).
Google Scholar
Olofsson, T. C., Alsterfjord, M., Nilson, B., Butler, È. & Vásquez, A. Lactobacillus apinorum sp. nov., Lactobacillus mellifer sp. nov., Lactobacillus mellis sp. nov., Lactobacillus melliventris sp. nov., Lactobacillus kimbladii sp. nov., Lactobacillus helsingborgensis sp. nov. and lactobacillus kullabergensis sp. nov., isolated from the honey stomach of the honeybee Apis mellifera. Int. J. Syst. Evol. Microbiol. 64, 3109–3119 (2014).
Google Scholar
Ahn, J. H. et al. Pyrosequencing analysis of the bacterial communities in the guts of honey bees Apis cerana and Apis mellifera in Korea. J. Microbiol. 50, 735–745 (2012).
Google Scholar
Heo, J., Kim, S. J., Kim, J. S., Hong, S. B. & Kwon, S. W. Comparative genomics of Lactobacillus species as bee symbionts and description of Lactobacillus bombintestini sp. nov., isolated from the gut of Bombus ignitus. J. Microbiol. 58(445), 455 (2020).
Google Scholar
Martinson, V. G. et al. A simple and distinctive microbiota associated with honey bees and bumble bees. Mol. Ecol. 20, 619–628 (2011).
Google Scholar
Kang, J. P. et al. Bombilactobacillus apium sp. nov., isolated from the gut of honeybee (Apis cerana) Arch. Microbiol. 203(2193), 2198 (2021).
Google Scholar
Zhang, Z. et al. (2022) Honeybee gut Lactobacillus modulates host learning and memory behaviors via regulating tryptophan metabolism. Nat. Commun. 13(1), 13 (2022).
Google Scholar
Li, T. T., Liu, D. D., Fu, M. L. & Gu, C. T. Proposal of lactobacillus kosoi chiou et al. 2018 as a later heterotypic synonym of lactobacillus micheneri mcfrederick et al. 2018, elevation of lactobacillus plantarum subsp. argentoratensis to the species level as lactobacillus argentoratensis sp. nov., and lactobacillus zhaodongensis sp. nov., isolated from traditional chinese pickle and the intestinal tract of a honey bee (apis mellifera). Int. J. Syst. Evol. Microbiol. 70, 3123–3133 (2020).
Google Scholar
Han, B. et al. Lactobacillus Firm-5-derived succinate prevents honeybees from having diabetes-like symptoms. Proc. Natl. Acad. Sci. U S A 121, e2405410121 (2024).
Google Scholar
Engel, P., Martinson, V. G. & Moran, N. A. Functional diversity within the simple gut microbiota of the honey bee. Proc. Natl. Acad. Sci. U S A 109, 11002–11007 (2012).
Google Scholar
Brar, G. et al. Environmentally acquired gut-associated bacteria are not critical for growth and survival in a solitary bee Megachile rotundata. Appl. Environ. Microbiol. https://doi.org/10.1128/aem.02076-23 (2024).
Google Scholar
McFrederick, Q. S., Mueller, U. G. & James, R. R. Interactions between fungi and bacteria influence microbial community structure in the Megachile rotundata larval gut. Proc. R. Soc. B: Biol. Sci. https://doi.org/10.1098/rspb.2013.2653 (2014).
Google Scholar
Vásquez, A. et al. Symbionts as major modulators of insect health: lactic acid bacteria and honeybees. PLoS One 7, e33188 (2012).
Google Scholar
Forsgren, E., Olofsson, T. C., Vásquez, A. & Fries, I. Novel lactic acid bacteria inhibiting paenibacillus larvae in honey bee larvae. Apidologie 41(1), 99–108 (2010).
Google Scholar
Moharrami, M., Mojgani, N., Bagheri, M. & Toutiaee, S. role of honey bee gut microbiota in the control of American foulbrood and european foulbrood diseases. Arch. Razi. Inst. 77, 1331–1339 (2022).
Google Scholar
Daisley, B. A. et al. Lactobacillus spp. attenuate antibiotic-induced immune and microbiota dysregulation in honey bees. Commun. Biol. 3, 1–13 (2020).
Google Scholar
Forsgren, E., Locke, B., Sircoulomb, F. & Schäfer, M. O. Bacterial diseases in honeybees. Curr. Clin. Microbiol. Rep. 5, 18–25 (2018).
Google Scholar
Lang, H. et al. Specific strains of honeybee gut lactobacillus stimulate host immune system to protect against pathogenic hafnia alvei. Microbiol. Spectr. https://doi.org/10.1128/spectrum.01896-21 (2022).
Google Scholar
Kešnerová, L. et al. Disentangling metabolic functions of bacteria in the honey bee gut. PLoS Biol 15, e2003467 (2017).
Google Scholar
Yoshiyama, M. & Kimura, K. Bacteria in the gut of Japanese honeybee, Apis cerana japonica, and their antagonistic effect against Paenibacillus larvae, the causal agent of American foulbrood. J. Invertebr. Pathol. 102, 91–96 (2009).
Google Scholar
Sabaté, D. C., Carrillo, L. & Carina Audisio, M. Inhibition of Paenibacillus larvae and Ascosphaera apis by Bacillus subtilis isolated from honeybee gut and honey samples. Res. Microbiol. 160(193), 199 (2009).
Den Besten, G. et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid. Res. 54, 2325–2340 (2013).
Google Scholar
Zheng, H., Steele, M. I., Leonard, S. P., Motta, E. V. S. & Moran, N. A. Honey bees as models for gut microbiota research. Lab. Anim. Preprint at https://doi.org/10.1038/s41684-018-0173-x (2018).
Gaggìa, F. et al. Environment or genetic isolation? An atypical intestinal microbiota in the Maltese honey bee Apis mellifera spp. ruttneri. Front. Microbiol. 14, 1127717 (2023).
Google Scholar
Ge, Y., Jing, Z., Diao, Q., He, J. Z. & Liub, Y. J. Host species and geography differentiate honeybee gut bacterial communities by changing the relative contribution of community assembly processes. mBio https://doi.org/10.1128/mBio.00751-21 (2021).
Google Scholar
Hroncova, Z. et al. Variation in honey bee gut microbial diversity affected by ontogenetic stage age and geographic location. PLoS One 10, e0118707 (2015).
Google Scholar
Li, C., Tang, M., Li, X. & Zhou, X. Community Dynamics in Structure and Function of Honey Bee Gut Bacteria in Response to Winter Dietary Shift. mBio https://doi.org/10.1128/mbio.01131-22 (2022).
Google Scholar
Carlini, D. B., Winslow, S. K., Cloppenborg-Schmidt, K. & Baines, J. F. Quantitative microbiome profiling of honey bee bee (Apis mellifera) guts is predictive of winter colony loss in northern Virginia (USA). Sci. Rep. 14(1), 12 (2024).
Google Scholar
Jones, J. C. et al. Gut microbiota composition is associated with environmental landscape in honey bees. Ecol. Evol. 8, 441–451 (2018).
Google Scholar
Donkersley, P., Rhodes, G., Pickup, R. W., Jones, K. C. & Wilson, K. Bacterial communities associated with honeybee food stores are correlated with land use. Ecol. Evol. 8, 4743–4756 (2018).
Google Scholar
Rothman, J. A., Carroll, M. J., Meikle, W. G., Anderson, K. E. & McFrederick, Q. S. Longitudinal Effects of Supplemental Forage on the Honey Bee (Apis mellifera) Microbiota and Inter- and Intra-Colony Variability. Microb. Ecol. 76, 814–824 (2018).
Google Scholar
Liu, P. et al. Overwintering honeybees maintained dynamic and stable intestinal bacteria. Sci Rep. 11(1), 10 (2021).
D’Alvise, P. et al. The impact of winter feed type on intestinal microbiota and parasites in honey bees. Apidologie 49, 252–264 (2018).
Google Scholar
Kapheim, K. M. et al. Caste-specific differences in hindgut microbial communities of honey bees (Apis mellifera). PLoS One 10, e0123911 (2015).
Google Scholar
Papp, M. et al. Natural diversity of the honey bee (Apis mellifera) gut bacteriome in various climatic and seasonal states. PLoS One 17, e0273844 (2022).
Google Scholar
Pattabhiramaiah, M., Brueckner, D., Witzel, K. P., Junier, P. & Reddy, M. S. Prevalence of wolbachia in the European honeybee, apis mellifera carnica. World Appl. Sci. J. 15, 1503–1506 (2011).
Hoy, M. A., Jeyaprakash, A., Alvarez, J. M. & Allsopp, M. H. Wolbachia is present in Apis mellifera capensis, A. m. scutellata, and their hybrid in Southern Africa. Apidologie 34(53), 60 (2003).