Family-based genetics identifies association of CUBN, IL1RL1 and PRKN variants with leprosy in Bangladesh

Family-based genetics identifies association of CUBN, IL1RL1 and PRKN variants with leprosy in Bangladesh Family-based genetics identifies association of CUBN, IL1RL1 and PRKN variants with leprosy in Bangladesh


  • Britton, W. J., Lockwood, D. N. J. & Leprosy Lancet ;363:1209–1219. (2004).

    Article 
    PubMed 

    Google Scholar 

  • World Health Organization. Global Leprosy (Hansen Disease) Update, 2023: Elimination of Leprosy Disease is Possible – Time to Act! (2024). https://www.who.int/publications/i/item/who-wer9937-501-521

  • Fava, V. M., Dallmann-Sauer, M. & Schurr, E. Genetics of leprosy: today and beyond. Hum. Genet. 139 (6–7), 835–846 (2020).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Sauer, M. E. D. et al. Genetics of leprosy: expected and unexpected developments and perspectives. Clin. Dermatol. 33 (1), 99–107 (2015).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Cambri, G. & Mira, M. T. Genetic susceptibility to leprosy-from classic immune-related candidate genes to hypothesis-free, whole genome approaches. Front. Immunol. 9 (1674), 1–9 (2018).

    MATH 

    Google Scholar 

  • Ali, P. M. & Ramanujam, K. Leprosy in twins. Int. J. Lepr. 34 (4), 405–407 (1966).

    MATH 

    Google Scholar 

  • Chakravartti, M. R. & Vogel, F. A Twin Study on Leprosy, 1–29 (Georg Thieme Publishers, 1973).

  • Shields, E. D., Russell, D. A. & Percak-Vance, M. A. Genetic epidemiology of the susceptibility to leprosy. J. Clin. Invest. 79 (4), 1139–1143 (1987).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Abel, L. & Demenais, F. Detection of major genes for susceptibility to leprosy and its subtypes in a Caribbean Island: desirade Island. Am. J. Hum. Genet. 42, 256–266 (1988).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Abel, L. et al. Complex segregation analysis of leprosy in Southern Vietnam. Genet. Epidemiol. 12, 63–82 (1995).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Feitosa, M. F., Borecki, I., Krieger, H., Beiguelman, B. & Rao, D. C. The genetic epidemiology of leprosy in a Brazilian population. Am. J. Hum. Genet. 56, 1179–1185 (1995).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lázaro, F. P. et al. A major gene controls leprosy susceptibility in a hyperendemic isolated population from North of Brazil. J. Infect. Dis. 201 (10), 1598–1605 (2010).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Wagener, D. K. et al. Segregation analysis of leprosy in families of Northern Thailand. Genet. Epidemiol. 5, 95–105 (1988).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Cole, S. T. et al. Massive gene decay in the leprosy bacillus. Nature 409 (6823), 1007–1011 (2001).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar 

  • Siddiqui, M. R. et al. A major susceptibility locus for leprosy in India maps to chromosome 10p13. Nat. Genet. 27, 429–441 (2001).

    Article 

    Google Scholar 

  • Mira, M. T. et al. Chromosome 6q25 is linked to susceptibility to leprosy in a Vietnamese population. Nat. Genet. 33 (3), 412–415 (2003).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Alcaïs, A. et al. Stepwise replication identifies a low-producing lymphotoxin-α allele as a major risk factor for early-onset leprosy. Nat. Genet. 39 (4), 517–522 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Ali, S. et al. Association of variants in BAT1-LTA-TNF-BTNL2 genes within 6p21.3 region show graded risk to leprosy in unrelated cohorts of Indian population. Hum. Genet. 131 (5), 703–716 (2012).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Grant, A. V. et al. CUBN and NEBL common variants in the chromosome 10p13 linkage region are associated with multibacillary leprosy in Vietnam. Hum. Genet. 133 (7), 883–893 (2014).

    PubMed 

    Google Scholar 

  • Alter, A. et al. Genetic and functional analysis of common MRC1 exon 7 polymorphisms in leprosy susceptibility. Hum. Genet. 127 (3), 337–348 (2010).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Mira, M. T. et al. Susceptibility to leprosy is associated with PARK2 and PACRG. Nature 427 (6975), 636–640 (2004).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar 

  • Zhang, F. R. et al. Genomewide association study of leprosy. N Engl. J. Med. 361 (27), 2609–2618 (2009).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Cobat, A., Abel, L., Alcaïs, A. & Schurr, E. A general efficient and flexible approach for Genome-Wide association analyses of imputed genotypes in Family-Based designs. Genet. Epidemiol. 38 (6), 560–571 (2014).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Zhang, F. et al. Identification of two new loci at IL23R and RAB32 that influence susceptibility to leprosy. Nat. Genet. 43 (12), 1247–1251 (2011).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Ali, S., Srivastava, A. K. & Chopra, R. IL12B SNPs and copy number variation in IL23R gene associated with susceptibility to leprosy. J. Med. Genet. 50, 34–42 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Liu, H. et al. An association study of TOLL and CARD with leprosy susceptibility in Chinese population. Hum. Mol. Genet. 22 (21), 4430–4437 (2013).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Liu, H. et al. Discovery of six new susceptibility loci and analysis of pleiotropic effects in leprosy. Nat. Genet. 47 (3), 267–271 (2015).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Schuring, R. P. et al. Polymorphism N248S in the human Toll-like receptor 1 gene is related to leprosy and leprosy reactions. J. Infect. Dis. 199 (12), 1816–1819 (2009).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Hamann, L. et al. Low frequency of the TIRAP S180L polymorphism in Africa, and its potential role in malaria, sepsis, and leprosy. BMC Med. Genet. 10. (2009).

  • Horvath, S., Xu, X. & Laird, N. M. The family based association test method: strategies for studying general genotype ± phenotype associations. Eur. J. Hum. Genet. 9, 301–306 (2001).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Purcell, S. et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81 (3), 559–575 (2007).

    Article 
    MathSciNet 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Barrett, J. C., Fry, B., Maller, J., Daly, M. J. & Haploview Analysis and visualization of LD and haplotype maps. Bioinformatics 21 (2), 263–265 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Cordell, H. J., Barratt, B. J. & Clayton, D. G. Case/Pseudocontrol analysis in genetic association studies: A unified framework for detection of genotype and haplotype associations, Gene-Gene and Gene-Environment interactions, and Parent-of-Origin effects. Genet. Epidemiol. 26 (3), 167–185 (2004).

    Article 
    PubMed 

    Google Scholar 

  • R Development Core Team. The R Project for Statistical Computing. (2014). https://www.r-project.org/

  • González, J. R. et al. SNPassoc: an R package to perform whole genome association studies. Bioinformatics 23 (5), 644–645 (2007).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Fava, V. M. & Mira, M. T. Genetics of leprosy. In: (eds Nunzi, E. & Massone, C.) Leprosy: a Practical Guide. 1st ed. Springer; 1–384. (2012).

    MATH 

    Google Scholar 

  • Suryadevara, N. C. et al. Genetic association of G896A polymorphism of TLR4 gene in leprosy through family-based and case-control study designs. Trans. R Soc. Trop. Med. Hyg. 107 (12), 777–782 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Seetharams, B., Levine, J. S., Ramasamy, M. & Alpers, D. H. Purification, properties, and immunochemical localization of a receptor for intrinsic Factor-Cobalamin complex in the rat kidney**. J. Biol. Chem. 263 (9), 4443–4449 (1988).

    Article 

    Google Scholar 

  • Gopinath, K. et al. A vitamin B12 transporter in Mycobacterium tuberculosis. Open. Biol. 3 (120175), 1–10 (2013).

    MATH 

    Google Scholar 

  • Liu, H. et al. Identification of IL18RAP/IL18R1 and IL12B as leprosy risk genes demonstrates shared pathogenesis between inflammation and infectious diseases. Am. J. Hum. Genet. 91 (5), 935–941 (2012).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Schmitz, J. et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 23 (5), 479–490 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Ho, J. E. et al. Common genetic variation at the IL1RL1 locus regulates IL-33/ST2 signaling. J. Clin. Invest. 123 (10), 4208–4218 (2013).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • de Léséleuc, L. et al. PARK2 mediates Interleukin 6 and monocyte chemoattractant protein 1 production by human macrophages. PLoS Negl. Trop. Dis. 7(1). (2013).

  • Manzanillo, P. S. et al. The ubiquitin ligase parkin mediates resistance to intracellular pathogens. Nature 501 (7468), 512–516 (2013).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chopra, R. et al. PARK2 and Proinflammatory/ anti-inflammatory cytokine gene interactions contribute to the susceptibility to leprosy: a case-control study of North Indian population. BMJ Open. 4, 1–7 (2014).

    Article 
    MATH 

    Google Scholar 

  • Jia, F., Fellner, A. & Kumar, K. R. Monogenic Parkinson’s disease: genotype, phenotype, pathophysiology, and genetic testing. Genes (Basel). 13 (471), 1–25 (2022).

    MATH 

    Google Scholar 




  • Source link

    Add a comment

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Keep Up to Date with the Most Important News

    By pressing the Subscribe button, you confirm that you have read and are agreeing to our Privacy Policy and Terms of Use