Britton, W. J., Lockwood, D. N. J. & Leprosy Lancet ;363:1209–1219. (2004).
Google Scholar
World Health Organization. Global Leprosy (Hansen Disease) Update, 2023: Elimination of Leprosy Disease is Possible – Time to Act! (2024). https://www.who.int/publications/i/item/who-wer9937-501-521
Fava, V. M., Dallmann-Sauer, M. & Schurr, E. Genetics of leprosy: today and beyond. Hum. Genet. 139 (6–7), 835–846 (2020).
Google Scholar
Sauer, M. E. D. et al. Genetics of leprosy: expected and unexpected developments and perspectives. Clin. Dermatol. 33 (1), 99–107 (2015).
Google Scholar
Cambri, G. & Mira, M. T. Genetic susceptibility to leprosy-from classic immune-related candidate genes to hypothesis-free, whole genome approaches. Front. Immunol. 9 (1674), 1–9 (2018).
Google Scholar
Ali, P. M. & Ramanujam, K. Leprosy in twins. Int. J. Lepr. 34 (4), 405–407 (1966).
Google Scholar
Chakravartti, M. R. & Vogel, F. A Twin Study on Leprosy, 1–29 (Georg Thieme Publishers, 1973).
Shields, E. D., Russell, D. A. & Percak-Vance, M. A. Genetic epidemiology of the susceptibility to leprosy. J. Clin. Invest. 79 (4), 1139–1143 (1987).
Google Scholar
Abel, L. & Demenais, F. Detection of major genes for susceptibility to leprosy and its subtypes in a Caribbean Island: desirade Island. Am. J. Hum. Genet. 42, 256–266 (1988).
Google Scholar
Abel, L. et al. Complex segregation analysis of leprosy in Southern Vietnam. Genet. Epidemiol. 12, 63–82 (1995).
Google Scholar
Feitosa, M. F., Borecki, I., Krieger, H., Beiguelman, B. & Rao, D. C. The genetic epidemiology of leprosy in a Brazilian population. Am. J. Hum. Genet. 56, 1179–1185 (1995).
Google Scholar
Lázaro, F. P. et al. A major gene controls leprosy susceptibility in a hyperendemic isolated population from North of Brazil. J. Infect. Dis. 201 (10), 1598–1605 (2010).
Google Scholar
Wagener, D. K. et al. Segregation analysis of leprosy in families of Northern Thailand. Genet. Epidemiol. 5, 95–105 (1988).
Google Scholar
Cole, S. T. et al. Massive gene decay in the leprosy bacillus. Nature 409 (6823), 1007–1011 (2001).
Google Scholar
Siddiqui, M. R. et al. A major susceptibility locus for leprosy in India maps to chromosome 10p13. Nat. Genet. 27, 429–441 (2001).
Google Scholar
Mira, M. T. et al. Chromosome 6q25 is linked to susceptibility to leprosy in a Vietnamese population. Nat. Genet. 33 (3), 412–415 (2003).
Google Scholar
Alcaïs, A. et al. Stepwise replication identifies a low-producing lymphotoxin-α allele as a major risk factor for early-onset leprosy. Nat. Genet. 39 (4), 517–522 (2007).
Google Scholar
Ali, S. et al. Association of variants in BAT1-LTA-TNF-BTNL2 genes within 6p21.3 region show graded risk to leprosy in unrelated cohorts of Indian population. Hum. Genet. 131 (5), 703–716 (2012).
Google Scholar
Grant, A. V. et al. CUBN and NEBL common variants in the chromosome 10p13 linkage region are associated with multibacillary leprosy in Vietnam. Hum. Genet. 133 (7), 883–893 (2014).
Google Scholar
Alter, A. et al. Genetic and functional analysis of common MRC1 exon 7 polymorphisms in leprosy susceptibility. Hum. Genet. 127 (3), 337–348 (2010).
Google Scholar
Mira, M. T. et al. Susceptibility to leprosy is associated with PARK2 and PACRG. Nature 427 (6975), 636–640 (2004).
Google Scholar
Zhang, F. R. et al. Genomewide association study of leprosy. N Engl. J. Med. 361 (27), 2609–2618 (2009).
Google Scholar
Cobat, A., Abel, L., Alcaïs, A. & Schurr, E. A general efficient and flexible approach for Genome-Wide association analyses of imputed genotypes in Family-Based designs. Genet. Epidemiol. 38 (6), 560–571 (2014).
Google Scholar
Zhang, F. et al. Identification of two new loci at IL23R and RAB32 that influence susceptibility to leprosy. Nat. Genet. 43 (12), 1247–1251 (2011).
Google Scholar
Ali, S., Srivastava, A. K. & Chopra, R. IL12B SNPs and copy number variation in IL23R gene associated with susceptibility to leprosy. J. Med. Genet. 50, 34–42 (2013).
Google Scholar
Liu, H. et al. An association study of TOLL and CARD with leprosy susceptibility in Chinese population. Hum. Mol. Genet. 22 (21), 4430–4437 (2013).
Google Scholar
Liu, H. et al. Discovery of six new susceptibility loci and analysis of pleiotropic effects in leprosy. Nat. Genet. 47 (3), 267–271 (2015).
Google Scholar
Schuring, R. P. et al. Polymorphism N248S in the human Toll-like receptor 1 gene is related to leprosy and leprosy reactions. J. Infect. Dis. 199 (12), 1816–1819 (2009).
Google Scholar
Hamann, L. et al. Low frequency of the TIRAP S180L polymorphism in Africa, and its potential role in malaria, sepsis, and leprosy. BMC Med. Genet. 10. (2009).
Horvath, S., Xu, X. & Laird, N. M. The family based association test method: strategies for studying general genotype ± phenotype associations. Eur. J. Hum. Genet. 9, 301–306 (2001).
Google Scholar
Purcell, S. et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81 (3), 559–575 (2007).
Google Scholar
Barrett, J. C., Fry, B., Maller, J., Daly, M. J. & Haploview Analysis and visualization of LD and haplotype maps. Bioinformatics 21 (2), 263–265 (2005).
Google Scholar
Cordell, H. J., Barratt, B. J. & Clayton, D. G. Case/Pseudocontrol analysis in genetic association studies: A unified framework for detection of genotype and haplotype associations, Gene-Gene and Gene-Environment interactions, and Parent-of-Origin effects. Genet. Epidemiol. 26 (3), 167–185 (2004).
Google Scholar
R Development Core Team. The R Project for Statistical Computing. (2014). https://www.r-project.org/
González, J. R. et al. SNPassoc: an R package to perform whole genome association studies. Bioinformatics 23 (5), 644–645 (2007).
Google Scholar
Fava, V. M. & Mira, M. T. Genetics of leprosy. In: (eds Nunzi, E. & Massone, C.) Leprosy: a Practical Guide. 1st ed. Springer; 1–384. (2012).
Google Scholar
Suryadevara, N. C. et al. Genetic association of G896A polymorphism of TLR4 gene in leprosy through family-based and case-control study designs. Trans. R Soc. Trop. Med. Hyg. 107 (12), 777–782 (2013).
Google Scholar
Seetharams, B., Levine, J. S., Ramasamy, M. & Alpers, D. H. Purification, properties, and immunochemical localization of a receptor for intrinsic Factor-Cobalamin complex in the rat kidney**. J. Biol. Chem. 263 (9), 4443–4449 (1988).
Google Scholar
Gopinath, K. et al. A vitamin B12 transporter in Mycobacterium tuberculosis. Open. Biol. 3 (120175), 1–10 (2013).
Google Scholar
Liu, H. et al. Identification of IL18RAP/IL18R1 and IL12B as leprosy risk genes demonstrates shared pathogenesis between inflammation and infectious diseases. Am. J. Hum. Genet. 91 (5), 935–941 (2012).
Google Scholar
Schmitz, J. et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 23 (5), 479–490 (2005).
Google Scholar
Ho, J. E. et al. Common genetic variation at the IL1RL1 locus regulates IL-33/ST2 signaling. J. Clin. Invest. 123 (10), 4208–4218 (2013).
Google Scholar
de Léséleuc, L. et al. PARK2 mediates Interleukin 6 and monocyte chemoattractant protein 1 production by human macrophages. PLoS Negl. Trop. Dis. 7(1). (2013).
Manzanillo, P. S. et al. The ubiquitin ligase parkin mediates resistance to intracellular pathogens. Nature 501 (7468), 512–516 (2013).
Google Scholar
Chopra, R. et al. PARK2 and Proinflammatory/ anti-inflammatory cytokine gene interactions contribute to the susceptibility to leprosy: a case-control study of North Indian population. BMJ Open. 4, 1–7 (2014).
Google Scholar
Jia, F., Fellner, A. & Kumar, K. R. Monogenic Parkinson’s disease: genotype, phenotype, pathophysiology, and genetic testing. Genes (Basel). 13 (471), 1–25 (2022).
Google Scholar