Benton, M. L. et al. The influence of evolutionary history on human health and disease. Nat. Rev. Genet. 22, 269–283 (2021).
Google Scholar
Hancock, A. M. et al. Adaptations to climate-mediated selective pressures in humans. PLoS Genet. 7, e1001375 (2011).
Google Scholar
Sohail, M., Izarraras-Gomez, A. & Ortega-Del Vecchyo, D. Populations, traits, and their spatial structure in humans. Genome Biol. Evol. 13, evab272 (2021).
Huerta-Sánchez, E. et al. Altitude adaptation in Tibetans caused by introgression of Denisovan-like DNA. Nature 512, 194–197 (2014).
Google Scholar
Sohail, M. et al. Mexican Biobank advances population and medical genomics of diverse ancestries. Nature 622, 775–783 (2023).
Google Scholar
Malawsky, D. S. et al. Influence of autozygosity on common disease risk across the phenotypic spectrum. Cell 186, 4514–4527 (2023).
Google Scholar
Decolonising health and medicine. BMJ https://www.bmj.com/decolonising-health (2023).
Hussain, M., Sadigh, M., Sadigh, M., Rastegar, A. & Sewankambo, N. Colonization and decolonization of global health: which way forward? Glob. Health Action 16, 2186575 (2023).
Google Scholar
Thomas, A. Colonization as a determinant of health. Global Health Equity https://ghe.uwo.ca/blog/posts/colonization_as_a_determinant_of_health.html (2024).
Fatumo, S. et al. A roadmap to increase diversity in genomic studies. Nat. Med. 28, 243–250 (2022).
Google Scholar
Palma-Martínez, M. J. et al. The multi-scale complexity of human genetic variation beyond continental groups. Preprint at bioRxiv https://doi.org/10.1101/2024.12.11.627824 (2024).
Zeberg, H. & Pääbo, S. The major genetic risk factor for severe COVID-19 is inherited from Neanderthals. Nature 587, 610–612 (2020).
Google Scholar
Belbin, G. M. et al. Genetic identification of a common collagen disease in puerto ricans via identity-by-descent mapping in a health system. eLife 6, 1–28 (2017).
Google Scholar
Ji, A. et al. Aotearoa New Zealand Māori and Pacific population-amplified gout risk variants: is a separate risk gene at the locus. J. Rheumatol. 48, 1736–1744 (2021).
Google Scholar
Petrović, J., Pešić, V. & Lauschke, V. M. Frequencies of clinically important CYP2C19 and CYP2D6 alleles are graded across Europe. Eur. J. Hum. Genet. 28, 88–94 (2019).
Google Scholar
Hodgson, S. et al. Genetic basis of early onset and progression of type 2 diabetes in South Asians. Nat. Med. 31, 323–331 (2024).
Tishkoff, S. A. et al. Global patterns of linkage disequilibrium at the CD4 locus and modern human origins. Science 271, 1380–1387 (1996).
Google Scholar
Simon, A. & Coop, G. The contribution of gene flow, selection, and genetic drift to five thousand years of human allele frequency change. Proc. Natl Acad. Sci. USA 121, e2312377121 (2024).
Google Scholar
Human Genomic Variation. genome.gov https://www.genome.gov/about-genomics/educational-resources/fact-sheets/human-genomic-variation#:~:text=Researchers%20create%20reference%20human%20genome,for%20the%20~0.4%25%20difference (2023).
Alkan, C., Coe, B. P. & Eichler, E. E. Genome structural variation discovery and genotyping. Nat. Rev. Genet. 12, 363–376 (2011).
Google Scholar
Fernández Alonso, A. M., Varikasuvu, S. R. & Pérez-López, F. R. Telomere length and telomerase activity in men and non-pregnant women with and without metabolic syndrome: a systematic review and bootstrapped meta-analysis. J. Diabetes Metab. Disord. 24, 1–13 (2024).
Google Scholar
Li, C. et al. HervD Atlas: a curated knowledgebase of associations between human endogenous retroviruses and diseases. Nucleic Acids Res. 52, D1315–D1326 (2024).
Google Scholar
Liao, W.-W. et al. A draft human pangenome reference. Nature 617, 312–324 (2023).
Google Scholar
Lewis, A. C. F. et al. Getting genetic ancestry right for science and society. Science 376, 250–252 (2022).
Google Scholar
National Academies of Sciences, Engineering, and Medicine et al. Using Population Descriptors in Genetics and Genomics Research: A New Framework for an Evolving Field (National Academies Press, 2023).
Kerner, G. & Quintana-Murci, L. The genetic and evolutionary determinants of COVID-19 susceptibility. Eur. J. Hum. Genet.30, 915–921 (2022).
Google Scholar
Zeberg, H. & Pääbo, S. A genomic region associated with protection against severe COVID-19 is inherited from Neandertals. Proc. Natl Acad. Sci. USA 118, e2026309118 (2021).
Ceballos, F. C., Joshi, P. K., Clark, D. W., Ramsay, M. & Wilson, J. F. Runs of homozygosity: windows into population history and trait architecture. Nat. Rev. Genet. 19, 220–234 (2018).
Google Scholar
Kirin, M. et al. Genomic runs of homozygosity record population history and consanguinity. PLoS ONE 5, e13996 (2010).
Google Scholar
Clark, D. W. et al. Associations of autozygosity with a broad range of human phenotypes. Nat. Commun. 10, 1–17 (2019).
Google Scholar
Swinford, N. et al. Examination of runs of homozygosity in relation to height in an endogamous Namibian population. Am. J. Biol. Anthropol. 180, 207–215 (2023).
Google Scholar
Ávila-Arcos, M. C. et al. Population history and gene divergence in native Mexicans inferred from 76 human exomes. Mol. Biol. Evol. 37, 994–1006 (2020).
Google Scholar
Arciero, E. et al. Fine-scale population structure and demographic history of British Pakistanis. Nat. Commun. 12, 7189 (2021).
Google Scholar
Lawrence, E. S. et al. Functional / missense variant is associated with hematocrit in Andean highlanders. Sci. Adv. 10, eadj5661 (2024).
Google Scholar
Martin, A. R. et al. An unexpectedly complex architecture for skin pigmentation in Africans. Cell 171, 1340–1353(2017).
Google Scholar
Acuña-Alonzo, V. et al. A functional ABCA1 gene variant is associated with low HDL-cholesterol levels and shows evidence of positive selection in Native Americans. Hum. Mol. Genet. 19, 2877–2885 (2010).
Google Scholar
Hunter, D. J. Gene–environment interactions in human diseases. Nat. Rev. Genet. 6, 287–298 (2005).
Google Scholar
Young, A. I., Wauthier, F. & Donnelly, P. Multiple novel gene-by-environment interactions modify the effect of FTO variants on body mass index. Nat. Commun. 7, 12724 (2016).
Google Scholar
Kilpeläinen, T. O. et al. Physical activity attenuates the influence of FTO variants on obesity risk: a meta-analysis of 218,166 adults and 19,268 children. PLoS Med. 8, e1001116 (2011).
Google Scholar
Hou, K. et al. Calibrated prediction intervals for polygenic scores across diverse contexts. Nat. Genet. 56, 1386–1396 (2024).
Google Scholar
Donis-Keller, H. et al. A genetic linkage map of the human genome. Cell 51, 319–337 (1987).
Google Scholar
Watson, J. D. & Jordan, E. The Human Genome Program at the National Institutes of Health. Genomics 5, 654–656 (1989).
Google Scholar
Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).
Google Scholar
Ikegawa, S. A short history of the genome-wide association study: where we were and where we are going. Genomics Inform. 10, 220–225 (2012).
Google Scholar
Isgut, M., Song, K., Ehm, M. G., Wang, M. D. & Davitte, J. Effect of case and control definitions on genome-wide association study (GWAS) findings. Genet. Epidemiol. 47, 394–406 (2023).
Google Scholar
Uffelmann, E. et al. Genome-wide association studies. Nat. Rev. Methods Primers 1, 59 (2021).
Ozaki, K. et al. Functional SNPs in the lymphotoxin-α gene that are associated with susceptibility to myocardial infarction. Nat. Genet. 32, 650–654 (2002).
Google Scholar
Klein, R. J. et al. Complement factor H polymorphism in age-related macular degeneration. Science 308, 385–389 (2005).
Google Scholar
Dewan, A. et al. HTRA1 promoter polymorphism in wet age-related macular degeneration. Science 314, 989–992 (2006).
Google Scholar
Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678 (2007).
Google Scholar
Abdellaoui, A., Yengo, L., Verweij, K. J. H. & Visscher, P. M. 15 years of GWAS discovery: realizing the promise. Am. J. Hum. Genet. 110, 179–194 (2023).
Google Scholar
Loos, R. J. F. 15 years of genome-wide association studies and no signs of slowing down. Nat. Commun. 11, 5900 (2020).
Google Scholar
1000 Genomes Project Consortium et al. A map of human genome variation from population-scale sequencing. Nature 467, 1061–1073 (2010).
Google Scholar
Sohail, M. & Moreno-Estrada, A. The Mexican Biobank Project promotes genetic discovery, inclusive science and local capacity building. Dis. Model. Mech. 17, dmm050522 (2024).
Aganezov, S. et al. A complete reference genome improves analysis of human genetic variation. Science 376, eabl3533 (2022).
Google Scholar
Vollger, M. R. et al. Increased mutation and gene conversion within human segmental duplications. Nature 617, 325–334 (2023).
Google Scholar
Guarracino, A. et al. Recombination between heterologous human acrocentric chromosomes. Nature 617, 335–343 (2023).
Google Scholar
Logsdon, G. A. et al. The variation and evolution of complete human centromeres. Nature 629, 136–145 (2024).
Google Scholar
Singh, V., Pandey, S. & Bhardwaj, A. From the reference human genome to human pangenome: Premise, promise and challenge. Front. Genet. 13, 1042550 (2022).
Google Scholar
Chin, C.-S. et al. Multiscale analysis of pangenomes enables improved representation of genomic diversity for repetitive and clinically relevant genes. Nat. Methods 20, 1213–1221 (2023).
Google Scholar
Li, H. et al. Exome variant discrepancies due to reference-genome differences. Am. J. Hum. Genet. 108, 1239–1250 (2021).
Google Scholar
Wang, T. et al. The Human Pangenome Project: a global resource to map genomic diversity. Nature 604, 437–446 (2022).
Google Scholar
Miga, K. H. & Wang, T. The need for a human pangenome reference sequence. Annu. Rev. Genomics Hum. Genet. 22, 81–102 (2021).
Google Scholar
Zhou, W. et al. Global Biobank Meta-analysis Initiative: powering genetic discovery across human disease. Cell Genom. 2, 100192 (2022).
Google Scholar
Namba, S. et al. A practical guideline of genomics-driven drug discovery in the era of global biobank meta-analysis. Cell Genom. 2, 100190 (2022).
Google Scholar
Zhao, H. et al. Proteome-wide Mendelian randomization in global biobank meta-analysis reveals multi-ancestry drug targets for common diseases. Cell Genom. 2, 100195 (2022).
Demenais, F. et al. Multiancestry association study identifies new asthma risk loci that colocalize with immune-cell enhancer marks. Nat. Genet. 50, 42–53 (2018).
Google Scholar
Belbin, G. M. et al. Toward a fine-scale population health monitoring system. Cell 184, 2068–2083(2021).
Google Scholar
Bianchi, D. W. et al. The All of Us Research Program is an opportunity to enhance the diversity of US biomedical research. Nat. Med. 30, 330–333 (2024).
Google Scholar
The All of Us Research Program Genomics Investigators. Genomic data in the All of Us Research Program. Nature 627, 340–346 (2024).
Google Scholar
All of Us Research Program Investigators et al. The ‘All of Us’ Research Program. N. Engl. J. Med. 381, 668–676 (2019).
Google Scholar
Kozlov, M. ‘All of Us’ genetics chart stirs unease over controversial depiction of race. Nature https://doi.org/10.1038/d41586-024-00568-w (2024).
Arzua, T. Lessons for scientists from the All of Us Research Program backlash. STAT https://www.statnews.com/2024/03/15/all-of-us-genomic-sequencing-results-umap-science-history-sociology/ (2024).
Kaiser, J. Huge genome study confronted by concerns over race analysis. Science https://doi.org/10.1126/science.zx9c32i (2024).
Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).
Google Scholar
Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).
Google Scholar
Ding, Y. et al. Polygenic scoring accuracy varies across the genetic ancestry continuum. Nature 618, 774–781 (2023).
Google Scholar
Diaz-Papkovich, A. et al. Topological stratification of continuous genetic variation in large biobanks. Preprint at bioRxiv https://doi.org/10.1101/2023.07.06.548007 (2023).
Koyama, S. et al. Decoding genetics, ancestry, and geospatial context for precision health. Preprint at medRxiv https://doi.org/10.1101/2023.10.24.23297096 (2023).
Ni, G. et al. Genotype-covariate correlation and interaction disentangled by a whole-genome multivariate reaction norm model. Nat. Commun. 10, 2239 (2019).
Google Scholar
Sadowski, M. et al. Characterizing the genetic architecture of drug response using gene-context interaction methods. Cell Genom. 4, 100722 (2024).
Google Scholar
Ziyatdinov, A. et al. Genotyping, sequencing and analysis of 140,000 adults from Mexico City. Nature 622, 784–793 (2023).
Google Scholar
Nagai, A. et al. Overview of the BioBank Japan Project: study design and profile. J. Epidemiol. 27, S2–S8 (2017).
Google Scholar
Walters, R. G. et al. Genotyping and population characteristics of the China Kadoorie Biobank. Cell Genom. 3, 100361 (2023).
Google Scholar
GenomeAsia100K Consortium. The GenomeAsia 100K Project enables genetic discoveries across Asia. Nature 576, 106–111 (2019).
Google Scholar
Wu, D. et al. Large-scale whole-genome sequencing of three diverse asian populations in Singapore. Cell 179, 736–749(2019).
Google Scholar
Fatumo, S. et al. Uganda Genome Resource: a rich research database for genomic studies of communicable and non-communicable diseases in Africa. Cell Genom. 2, 100209 (2022).
Choudhury, A. et al. High-depth African genomes inform human migration and health. Nature 586, 741–748 (2020).
Google Scholar
Okada, Y. et al. Deep whole-genome sequencing reveals recent selection signatures linked to evolution and disease risk of Japanese. Nat. Commun. 9, 1631 (2018).
Google Scholar
Yamamoto, K. et al. Genetic legacy of ancient hunter-gatherer Jomon in Japanese populations. Nat. Commun. 15, 9780 (2024).
Google Scholar
Bergström, A. et al. Insights into human genetic variation and population history from 929 diverse genomes. Science 367, eaay5012 (2020).
Google Scholar
Forrest, I. S. et al. Genome-first evaluation with exome sequence and clinical data uncovers underdiagnosed genetic disorders in a large healthcare system. Cell Rep. Med. 5, 101518 (2024).
Google Scholar
Koyama, S. et al. Population-specific putative causal variants shape quantitative traits. Nat. Genet. 56, 2027–2035 (2024).
Google Scholar
Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).
Google Scholar
1000 Genomes Project Consortium et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).
Moonesinghe, R. et al. Estimating the contribution of genetic variants to difference in incidence of disease between population groups. Eur. J. Hum. Genet. 20, 831–836 (2012).
Google Scholar
de Smith, A. J. et al. A noncoding regulatory variant in IKZF1 increases acute lymphoblastic leukemia risk in Hispanic/Latino children. Cell Genom. 4, 100526 (2024).
Google Scholar
Saxena, R. & Palmer, N. D. in The Genetics of Type 2 Diabetes and Related Traits: Biology, Physiology and Translation (ed. Florez, J. C.) 183–206 (Springer International Publishing, 2016).
Chiang, C. W. K. The opportunities and challenges of integrating population histories into genetic studies for diverse populations: a motivating example from Native Hawaiians. Front. Genet. 12, 643883 (2021).
Google Scholar
Brown, M. D. et al. The role of mtDNA background in disease expression: a new primary LHON mutation associated with Western Eurasian haplogroup J. Hum. Genet. 110, 130–138 (2002).
Google Scholar
Saxena, R. et al. Comprehensive association testing of common mitochondrial DNA variation in metabolic disease. Am. J. Hum. Genet. 79, 54–61 (2006).
Google Scholar
Baudouin, S. V. et al. Mitochondrial DNA and survival after sepsis: a prospective study. Lancet 366, 2118–2121 (2005).
Google Scholar
Darvishi, K., Sharma, S., Bhat, A. K., Rai, E. & Bamezai, R. N. K. Mitochondrial DNA G10398A polymorphism imparts maternal haplogroup N a risk for breast and esophageal cancer. Cancer Lett. 249, 249–255 (2007).
Hingorani, A. D. et al. Improving the odds of drug development success through human genomics: modelling study. Sci. Rep. 9, 18911 (2019).
Google Scholar
Karamperis, K. et al. Genetic ancestry in population pharmacogenomics unravels distinct geographical patterns related to drug toxicity. iScience 27, 110916 (2024).
Google Scholar
Duarte, J. D. et al. Clinical Pharmacogenetics Implementation Consortium guideline (CPIC) for CYP2D6, ADRB1, ADRB2, ADRA2C, GRK4, and GRK5 genotypes and beta-blocker therapy. Clin. Pharmacol. Ther. 116, 939–947 (2024).
Google Scholar
Burke, W., Khoury, M. J., Stewart, A., Zimmern, R. L. & Bellagio Group. The path from genome-based research to population health: development of an international public health genomics network. Genet. Med. 8, 451–458 (2006).
Bastaki, K. et al. Forging the path to precision medicine in Qatar: a public health perspective on pharmacogenomics initiatives. Front. Public Health 12, 1364221 (2024).
Google Scholar
Choudhry, S. et al. Population stratification confounds genetic association studies among Latinos. Hum. Genet. 118, 652–664 (2006).
Google Scholar
Peterson, R. E. et al. Genome-wide association studies in ancestrally diverse populations: opportunities, methods, pitfalls, and recommendations. Cell 179, 589–603 (2019).
Google Scholar
Brandes, N., Weissbrod, O. & Linial, M. Open problems in human trait genetics. Genome Biol. 23, 131 (2022).
Google Scholar
Cevik, S. et al. Matching variants for functional characterization of genetic variants. G3 13, jkad227 (2023).
Google Scholar
McInnes, G. et al. Opportunities and challenges for the computational interpretation of rare variation in clinically important genes. Am. J. Hum. Genet. 108, 535–548 (2021).
Google Scholar
Taylor, C. et al. A review of the important role of CYP2D6 in pharmacogenomics. Genes 11, 1295 (2020).
Google Scholar
Tremmel, R., Zhou, Y., Schwab, M. & Lauschke, V. M. Structural variation of the coding and non-coding human pharmacogenome. NPJ Genom. Med. 8, 24 (2023).
Google Scholar
Jorge, L. F., Eichelbaum, M., Griese, E. U., Inaba, T. & Arias, T. D. Comparative evolutionary pharmacogenetics of CYP2D6 in Ngawbe and Embera Amerindians of Panama and Colombia: role of selection versus drift in world populations. Pharmacogenetics 9, 217–228 (1999).
Google Scholar
McInnes, G. et al. Pharmacogenetics at scale: an analysis of the UK Biobank. Clin. Pharmacol. Ther. 109, 1528–1537 (2021).
Google Scholar
McInnes, G., Yee, S. W., Pershad, Y. & Altman, R. B. Genomewide association studies in pharmacogenomics. Clin. Pharmacol. Ther. 110, 637–648 (2021).
Google Scholar
Zhou, K. et al. Variation in the glucose transporter gene SLC2A2 is associated with glycemic response to metformin. Nat. Genet. 48, 1055–1059 (2016).
Google Scholar
Wu, B. et al. Genome-wide association study identifies pharmacogenomic variants associated with metformin glycemic response in African American patients with type 2 diabetes. Diabetes Care 47, 208–215 (2024).
Google Scholar
Lappalainen, T., Scott, A. J., Brandt, M. & Hall, I. M. Genomic analysis in the age of human genome sequencing. Cell 177, 70–84 (2019).
Google Scholar
Nofziger, C. et al. PharmVar GeneFocus: CYP2D6. Clin. Pharmacol. Ther. 107, 154–170 (2020).
Google Scholar
Lee, C. R. et al. Clinical Pharmacogenetics Implementation Consortium guideline for CYP2C19 genotype and clopidogrel therapy: 2022 update. Clin. Pharmacol. Ther. 112, 959–967 (2022).
Google Scholar
Martin, A. R. et al. Clinical use of current polygenic risk scores may exacerbate health disparities. Nat. Genet. 51, 584–591 (2019).
Google Scholar
Hou, K. et al. Causal effects on complex traits are similar for common variants across segments of different continental ancestries within admixed individuals. Nat. Genet. 55, 549–558 (2023).
Google Scholar
Ruan, Y. et al. Improving polygenic prediction in ancestrally diverse populations. Nat. Genet. 54, 573–580 (2022).
Google Scholar
Guo, J. et al. Quantifying genetic heterogeneity between continental populations for human height and body mass index. Sci. Rep. 11, 5240 (2021).
Google Scholar
Kachuri, L. et al. Principles and methods for transferring polygenic risk scores across global populations. Nat. Rev. Genet. 25, 8–25 (2024).
Google Scholar
Mostafavi, H. et al. Variable prediction accuracy of polygenic scores within an ancestry group. eLife 9, e48376 (2020).
Smith, K. et al. Multi-ancestry polygenic mechanisms of type 2 diabetes. Nat. Med. 30, 1065–1074 (2024).
Google Scholar
Carroll, S. R. et al. The CARE principles for indigenous data governance. Open Scholarship Press Curated Volumes: Policy (2023).
Ávila-Arcos, M. C., de la Fuente Castro, C., Nieves-Colón, M. A. & Raghavan, M. Recommendations for sustainable ancient DNA research in the Global South: voices from a new generation of paleogenomicists. Front. Genet. 13, 880170 (2022).
Google Scholar
Wallace, D. C. & Fan, W. Energetics, epigenetics, mitochondrial genetics. Mitochondrion 10, 12–31 (2010).
Google Scholar
Gorman, G. S. et al. Mitochondrial diseases. Nat. Rev. Dis. Primers 2, 16080 (2016).
Google Scholar
Stewart, J. B. & Chinnery, P. F. The dynamics of mitochondrial DNA heteroplasmy: implications for human health and disease. Nat. Rev. Genet. 16, 530–542 (2015).
Google Scholar
Malik, A. N. & Czajka, A. Is mitochondrial DNA content a potential biomarker of mitochondrial dysfunction? Mitochondrion 13, 481–492 (2013).
Google Scholar
Jones, S. W., Ball, A. L., Chadwick, A. E. & Alfirevic, A. The role of miitochondrial DNA variation in drug response: a systematic review. Front. Genet. 12, 698825 (2021).
Google Scholar
Di Lorenzo, C. et al. Mitochondrial DNA haplogroups influence the therapeutic response to riboflavin in migraineurs. Neurology 72, 1588–1594 (2009).
Google Scholar
Sainero-Alcolado, L., Liaño-Pons, J., Ruiz-Pérez, M. V. & Arsenian-Henriksson, M. Targeting mitochondrial metabolism for precision medicine in cancer. Cell Death Differ. 29, 1304–1317 (2022).
Google Scholar
Falk, M. J. The pursuit of precision mitochondrial medicine: Harnessing preclinical cellular and animal models to optimize mitochondrial disease therapeutic discovery. J. Inherit. Metab. Dis. 44, 312–324 (2021).
Google Scholar
Shen, F.-C. et al. Mitochondrial haplogroups have a better correlation to insulin requirement than nuclear genetic variants for type 2 diabetes mellitus in Taiwanese individuals. J. Diabetes Investig. 13, 201–208 (2022).
Google Scholar
Domínguez-de-la-Cruz, E. et al. Reduced mitochondrial DNA copy number is associated with the haplogroup, and some clinical features of breast cancer in Mexican patients. Gene 761, 145047 (2020).
Google Scholar
Mitchell, S. L. et al. Investigating the relationship between mitochondrial genetic variation and cardiovascular-related traits to develop a framework for mitochondrial phenome-wide association studies. BioData Min. 7, 6 (2014).
Google Scholar
Bastarache, L., Denny, J. C. & Roden, D. M. Phenome-wide association studies. JAMA 327, 75–76 (2022).
Google Scholar
Harrison, P. W. et al. Ensembl 2024. Nucleic Acids Res. 52, D891–D899 (2024).
Google Scholar
Pemberton, T. J. et al. Genomic patterns of homozygosity in worldwide human populations. Am. J. Hum. Genet. 91, 275–292 (2012).
Google Scholar
Marcus, J. H. & Novembre, J. Visualizing the geography of genetic variants. Bioinformatics 33, 594–595 (2016).
Google Scholar