Evolution, genetic diversity, and health

Evolution, genetic diversity, and health Evolution, genetic diversity, and health


  • Benton, M. L. et al. The influence of evolutionary history on human health and disease. Nat. Rev. Genet. 22, 269–283 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hancock, A. M. et al. Adaptations to climate-mediated selective pressures in humans. PLoS Genet. 7, e1001375 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sohail, M., Izarraras-Gomez, A. & Ortega-Del Vecchyo, D. Populations, traits, and their spatial structure in humans. Genome Biol. Evol. 13, evab272 (2021).

  • Huerta-Sánchez, E. et al. Altitude adaptation in Tibetans caused by introgression of Denisovan-like DNA. Nature 512, 194–197 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sohail, M. et al. Mexican Biobank advances population and medical genomics of diverse ancestries. Nature 622, 775–783 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Malawsky, D. S. et al. Influence of autozygosity on common disease risk across the phenotypic spectrum. Cell 186, 4514–4527 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Decolonising health and medicine. BMJ https://www.bmj.com/decolonising-health (2023).

  • Hussain, M., Sadigh, M., Sadigh, M., Rastegar, A. & Sewankambo, N. Colonization and decolonization of global health: which way forward? Glob. Health Action 16, 2186575 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Thomas, A. Colonization as a determinant of health. Global Health Equity https://ghe.uwo.ca/blog/posts/colonization_as_a_determinant_of_health.html (2024).

  • Fatumo, S. et al. A roadmap to increase diversity in genomic studies. Nat. Med. 28, 243–250 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Palma-Martínez, M. J. et al. The multi-scale complexity of human genetic variation beyond continental groups. Preprint at bioRxiv https://doi.org/10.1101/2024.12.11.627824 (2024).

  • Zeberg, H. & Pääbo, S. The major genetic risk factor for severe COVID-19 is inherited from Neanderthals. Nature 587, 610–612 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Belbin, G. M. et al. Genetic identification of a common collagen disease in puerto ricans via identity-by-descent mapping in a health system. eLife 6, 1–28 (2017).

    Article 

    Google Scholar 

  • Ji, A. et al. Aotearoa New Zealand Māori and Pacific population-amplified gout risk variants: is a separate risk gene at the locus. J. Rheumatol. 48, 1736–1744 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Petrović, J., Pešić, V. & Lauschke, V. M. Frequencies of clinically important CYP2C19 and CYP2D6 alleles are graded across Europe. Eur. J. Hum. Genet. 28, 88–94 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hodgson, S. et al. Genetic basis of early onset and progression of type 2 diabetes in South Asians. Nat. Med. 31, 323–331 (2024).

  • Tishkoff, S. A. et al. Global patterns of linkage disequilibrium at the CD4 locus and modern human origins. Science 271, 1380–1387 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Simon, A. & Coop, G. The contribution of gene flow, selection, and genetic drift to five thousand years of human allele frequency change. Proc. Natl Acad. Sci. USA 121, e2312377121 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Human Genomic Variation. genome.gov https://www.genome.gov/about-genomics/educational-resources/fact-sheets/human-genomic-variation#:~:text=Researchers%20create%20reference%20human%20genome,for%20the%20~0.4%25%20difference (2023).

  • Alkan, C., Coe, B. P. & Eichler, E. E. Genome structural variation discovery and genotyping. Nat. Rev. Genet. 12, 363–376 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fernández Alonso, A. M., Varikasuvu, S. R. & Pérez-López, F. R. Telomere length and telomerase activity in men and non-pregnant women with and without metabolic syndrome: a systematic review and bootstrapped meta-analysis. J. Diabetes Metab. Disord. 24, 1–13 (2024).

    Article 

    Google Scholar 

  • Li, C. et al. HervD Atlas: a curated knowledgebase of associations between human endogenous retroviruses and diseases. Nucleic Acids Res. 52, D1315–D1326 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liao, W.-W. et al. A draft human pangenome reference. Nature 617, 312–324 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lewis, A. C. F. et al. Getting genetic ancestry right for science and society. Science 376, 250–252 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • National Academies of Sciences, Engineering, and Medicine et al. Using Population Descriptors in Genetics and Genomics Research: A New Framework for an Evolving Field (National Academies Press, 2023).

  • Kerner, G. & Quintana-Murci, L. The genetic and evolutionary determinants of COVID-19 susceptibility. Eur. J. Hum. Genet.30, 915–921 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zeberg, H. & Pääbo, S. A genomic region associated with protection against severe COVID-19 is inherited from Neandertals. Proc. Natl Acad. Sci. USA 118, e2026309118 (2021).

  • Ceballos, F. C., Joshi, P. K., Clark, D. W., Ramsay, M. & Wilson, J. F. Runs of homozygosity: windows into population history and trait architecture. Nat. Rev. Genet. 19, 220–234 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kirin, M. et al. Genomic runs of homozygosity record population history and consanguinity. PLoS ONE 5, e13996 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Clark, D. W. et al. Associations of autozygosity with a broad range of human phenotypes. Nat. Commun. 10, 1–17 (2019).

    Article 
    CAS 

    Google Scholar 

  • Swinford, N. et al. Examination of runs of homozygosity in relation to height in an endogamous Namibian population. Am. J. Biol. Anthropol. 180, 207–215 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Ávila-Arcos, M. C. et al. Population history and gene divergence in native Mexicans inferred from 76 human exomes. Mol. Biol. Evol. 37, 994–1006 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Arciero, E. et al. Fine-scale population structure and demographic history of British Pakistanis. Nat. Commun. 12, 7189 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lawrence, E. S. et al. Functional / missense variant is associated with hematocrit in Andean highlanders. Sci. Adv. 10, eadj5661 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Martin, A. R. et al. An unexpectedly complex architecture for skin pigmentation in Africans. Cell 171, 1340–1353(2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Acuña-Alonzo, V. et al. A functional ABCA1 gene variant is associated with low HDL-cholesterol levels and shows evidence of positive selection in Native Americans. Hum. Mol. Genet. 19, 2877–2885 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hunter, D. J. Gene–environment interactions in human diseases. Nat. Rev. Genet. 6, 287–298 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Young, A. I., Wauthier, F. & Donnelly, P. Multiple novel gene-by-environment interactions modify the effect of FTO variants on body mass index. Nat. Commun. 7, 12724 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kilpeläinen, T. O. et al. Physical activity attenuates the influence of FTO variants on obesity risk: a meta-analysis of 218,166 adults and 19,268 children. PLoS Med. 8, e1001116 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hou, K. et al. Calibrated prediction intervals for polygenic scores across diverse contexts. Nat. Genet. 56, 1386–1396 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Donis-Keller, H. et al. A genetic linkage map of the human genome. Cell 51, 319–337 (1987).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Watson, J. D. & Jordan, E. The Human Genome Program at the National Institutes of Health. Genomics 5, 654–656 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ikegawa, S. A short history of the genome-wide association study: where we were and where we are going. Genomics Inform. 10, 220–225 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Isgut, M., Song, K., Ehm, M. G., Wang, M. D. & Davitte, J. Effect of case and control definitions on genome-wide association study (GWAS) findings. Genet. Epidemiol. 47, 394–406 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Uffelmann, E. et al. Genome-wide association studies. Nat. Rev. Methods Primers 1, 59 (2021).

  • Ozaki, K. et al. Functional SNPs in the lymphotoxin-α gene that are associated with susceptibility to myocardial infarction. Nat. Genet. 32, 650–654 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Klein, R. J. et al. Complement factor H polymorphism in age-related macular degeneration. Science 308, 385–389 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dewan, A. et al. HTRA1 promoter polymorphism in wet age-related macular degeneration. Science 314, 989–992 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678 (2007).

    Article 

    Google Scholar 

  • Abdellaoui, A., Yengo, L., Verweij, K. J. H. & Visscher, P. M. 15 years of GWAS discovery: realizing the promise. Am. J. Hum. Genet. 110, 179–194 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Loos, R. J. F. 15 years of genome-wide association studies and no signs of slowing down. Nat. Commun. 11, 5900 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 1000 Genomes Project Consortium et al. A map of human genome variation from population-scale sequencing. Nature 467, 1061–1073 (2010).

    Article 

    Google Scholar 

  • Sohail, M. & Moreno-Estrada, A. The Mexican Biobank Project promotes genetic discovery, inclusive science and local capacity building. Dis. Model. Mech. 17, dmm050522 (2024).

  • Aganezov, S. et al. A complete reference genome improves analysis of human genetic variation. Science 376, eabl3533 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vollger, M. R. et al. Increased mutation and gene conversion within human segmental duplications. Nature 617, 325–334 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guarracino, A. et al. Recombination between heterologous human acrocentric chromosomes. Nature 617, 335–343 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Logsdon, G. A. et al. The variation and evolution of complete human centromeres. Nature 629, 136–145 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Singh, V., Pandey, S. & Bhardwaj, A. From the reference human genome to human pangenome: Premise, promise and challenge. Front. Genet. 13, 1042550 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chin, C.-S. et al. Multiscale analysis of pangenomes enables improved representation of genomic diversity for repetitive and clinically relevant genes. Nat. Methods 20, 1213–1221 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, H. et al. Exome variant discrepancies due to reference-genome differences. Am. J. Hum. Genet. 108, 1239–1250 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, T. et al. The Human Pangenome Project: a global resource to map genomic diversity. Nature 604, 437–446 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Miga, K. H. & Wang, T. The need for a human pangenome reference sequence. Annu. Rev. Genomics Hum. Genet. 22, 81–102 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou, W. et al. Global Biobank Meta-analysis Initiative: powering genetic discovery across human disease. Cell Genom. 2, 100192 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Namba, S. et al. A practical guideline of genomics-driven drug discovery in the era of global biobank meta-analysis. Cell Genom. 2, 100190 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhao, H. et al. Proteome-wide Mendelian randomization in global biobank meta-analysis reveals multi-ancestry drug targets for common diseases. Cell Genom. 2, 100195 (2022).

  • Demenais, F. et al. Multiancestry association study identifies new asthma risk loci that colocalize with immune-cell enhancer marks. Nat. Genet. 50, 42–53 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Belbin, G. M. et al. Toward a fine-scale population health monitoring system. Cell 184, 2068–2083(2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bianchi, D. W. et al. The All of Us Research Program is an opportunity to enhance the diversity of US biomedical research. Nat. Med. 30, 330–333 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • The All of Us Research Program Genomics Investigators. Genomic data in the All of Us Research Program. Nature 627, 340–346 (2024).

    Article 
    CAS 

    Google Scholar 

  • All of Us Research Program Investigators et al. The ‘All of Us’ Research Program. N. Engl. J. Med. 381, 668–676 (2019).

    Article 

    Google Scholar 

  • Kozlov, M. ‘All of Us’ genetics chart stirs unease over controversial depiction of race. Nature https://doi.org/10.1038/d41586-024-00568-w (2024).

  • Arzua, T. Lessons for scientists from the All of Us Research Program backlash. STAT https://www.statnews.com/2024/03/15/all-of-us-genomic-sequencing-results-umap-science-history-sociology/ (2024).

  • Kaiser, J. Huge genome study confronted by concerns over race analysis. Science https://doi.org/10.1126/science.zx9c32i (2024).

  • Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ding, Y. et al. Polygenic scoring accuracy varies across the genetic ancestry continuum. Nature 618, 774–781 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Diaz-Papkovich, A. et al. Topological stratification of continuous genetic variation in large biobanks. Preprint at bioRxiv https://doi.org/10.1101/2023.07.06.548007 (2023).

  • Koyama, S. et al. Decoding genetics, ancestry, and geospatial context for precision health. Preprint at medRxiv https://doi.org/10.1101/2023.10.24.23297096 (2023).

  • Ni, G. et al. Genotype-covariate correlation and interaction disentangled by a whole-genome multivariate reaction norm model. Nat. Commun. 10, 2239 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sadowski, M. et al. Characterizing the genetic architecture of drug response using gene-context interaction methods. Cell Genom. 4, 100722 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ziyatdinov, A. et al. Genotyping, sequencing and analysis of 140,000 adults from Mexico City. Nature 622, 784–793 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nagai, A. et al. Overview of the BioBank Japan Project: study design and profile. J. Epidemiol. 27, S2–S8 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Walters, R. G. et al. Genotyping and population characteristics of the China Kadoorie Biobank. Cell Genom. 3, 100361 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • GenomeAsia100K Consortium. The GenomeAsia 100K Project enables genetic discoveries across Asia. Nature 576, 106–111 (2019).

    Article 

    Google Scholar 

  • Wu, D. et al. Large-scale whole-genome sequencing of three diverse asian populations in Singapore. Cell 179, 736–749(2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fatumo, S. et al. Uganda Genome Resource: a rich research database for genomic studies of communicable and non-communicable diseases in Africa. Cell Genom. 2, 100209 (2022).

  • Choudhury, A. et al. High-depth African genomes inform human migration and health. Nature 586, 741–748 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Okada, Y. et al. Deep whole-genome sequencing reveals recent selection signatures linked to evolution and disease risk of Japanese. Nat. Commun. 9, 1631 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yamamoto, K. et al. Genetic legacy of ancient hunter-gatherer Jomon in Japanese populations. Nat. Commun. 15, 9780 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bergström, A. et al. Insights into human genetic variation and population history from 929 diverse genomes. Science 367, eaay5012 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Forrest, I. S. et al. Genome-first evaluation with exome sequence and clinical data uncovers underdiagnosed genetic disorders in a large healthcare system. Cell Rep. Med. 5, 101518 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Koyama, S. et al. Population-specific putative causal variants shape quantitative traits. Nat. Genet. 56, 2027–2035 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 1000 Genomes Project Consortium et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).

  • Moonesinghe, R. et al. Estimating the contribution of genetic variants to difference in incidence of disease between population groups. Eur. J. Hum. Genet. 20, 831–836 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • de Smith, A. J. et al. A noncoding regulatory variant in IKZF1 increases acute lymphoblastic leukemia risk in Hispanic/Latino children. Cell Genom. 4, 100526 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Saxena, R. & Palmer, N. D. in The Genetics of Type 2 Diabetes and Related Traits: Biology, Physiology and Translation (ed. Florez, J. C.) 183–206 (Springer International Publishing, 2016).

  • Chiang, C. W. K. The opportunities and challenges of integrating population histories into genetic studies for diverse populations: a motivating example from Native Hawaiians. Front. Genet. 12, 643883 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brown, M. D. et al. The role of mtDNA background in disease expression: a new primary LHON mutation associated with Western Eurasian haplogroup J. Hum. Genet. 110, 130–138 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Saxena, R. et al. Comprehensive association testing of common mitochondrial DNA variation in metabolic disease. Am. J. Hum. Genet. 79, 54–61 (2006).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Baudouin, S. V. et al. Mitochondrial DNA and survival after sepsis: a prospective study. Lancet 366, 2118–2121 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Darvishi, K., Sharma, S., Bhat, A. K., Rai, E. & Bamezai, R. N. K. Mitochondrial DNA G10398A polymorphism imparts maternal haplogroup N a risk for breast and esophageal cancer. Cancer Lett. 249, 249–255 (2007).

  • Hingorani, A. D. et al. Improving the odds of drug development success through human genomics: modelling study. Sci. Rep. 9, 18911 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Karamperis, K. et al. Genetic ancestry in population pharmacogenomics unravels distinct geographical patterns related to drug toxicity. iScience 27, 110916 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Duarte, J. D. et al. Clinical Pharmacogenetics Implementation Consortium guideline (CPIC) for CYP2D6, ADRB1, ADRB2, ADRA2C, GRK4, and GRK5 genotypes and beta-blocker therapy. Clin. Pharmacol. Ther. 116, 939–947 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Burke, W., Khoury, M. J., Stewart, A., Zimmern, R. L. & Bellagio Group. The path from genome-based research to population health: development of an international public health genomics network. Genet. Med. 8, 451–458 (2006).

  • Bastaki, K. et al. Forging the path to precision medicine in Qatar: a public health perspective on pharmacogenomics initiatives. Front. Public Health 12, 1364221 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Choudhry, S. et al. Population stratification confounds genetic association studies among Latinos. Hum. Genet. 118, 652–664 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Peterson, R. E. et al. Genome-wide association studies in ancestrally diverse populations: opportunities, methods, pitfalls, and recommendations. Cell 179, 589–603 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brandes, N., Weissbrod, O. & Linial, M. Open problems in human trait genetics. Genome Biol. 23, 131 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cevik, S. et al. Matching variants for functional characterization of genetic variants. G3 13, jkad227 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McInnes, G. et al. Opportunities and challenges for the computational interpretation of rare variation in clinically important genes. Am. J. Hum. Genet. 108, 535–548 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Taylor, C. et al. A review of the important role of CYP2D6 in pharmacogenomics. Genes 11, 1295 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tremmel, R., Zhou, Y., Schwab, M. & Lauschke, V. M. Structural variation of the coding and non-coding human pharmacogenome. NPJ Genom. Med. 8, 24 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jorge, L. F., Eichelbaum, M., Griese, E. U., Inaba, T. & Arias, T. D. Comparative evolutionary pharmacogenetics of CYP2D6 in Ngawbe and Embera Amerindians of Panama and Colombia: role of selection versus drift in world populations. Pharmacogenetics 9, 217–228 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • McInnes, G. et al. Pharmacogenetics at scale: an analysis of the UK Biobank. Clin. Pharmacol. Ther. 109, 1528–1537 (2021).

    Article 
    PubMed 

    Google Scholar 

  • McInnes, G., Yee, S. W., Pershad, Y. & Altman, R. B. Genomewide association studies in pharmacogenomics. Clin. Pharmacol. Ther. 110, 637–648 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou, K. et al. Variation in the glucose transporter gene SLC2A2 is associated with glycemic response to metformin. Nat. Genet. 48, 1055–1059 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, B. et al. Genome-wide association study identifies pharmacogenomic variants associated with metformin glycemic response in African American patients with type 2 diabetes. Diabetes Care 47, 208–215 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lappalainen, T., Scott, A. J., Brandt, M. & Hall, I. M. Genomic analysis in the age of human genome sequencing. Cell 177, 70–84 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nofziger, C. et al. PharmVar GeneFocus: CYP2D6. Clin. Pharmacol. Ther. 107, 154–170 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lee, C. R. et al. Clinical Pharmacogenetics Implementation Consortium guideline for CYP2C19 genotype and clopidogrel therapy: 2022 update. Clin. Pharmacol. Ther. 112, 959–967 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Martin, A. R. et al. Clinical use of current polygenic risk scores may exacerbate health disparities. Nat. Genet. 51, 584–591 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hou, K. et al. Causal effects on complex traits are similar for common variants across segments of different continental ancestries within admixed individuals. Nat. Genet. 55, 549–558 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ruan, Y. et al. Improving polygenic prediction in ancestrally diverse populations. Nat. Genet. 54, 573–580 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guo, J. et al. Quantifying genetic heterogeneity between continental populations for human height and body mass index. Sci. Rep. 11, 5240 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kachuri, L. et al. Principles and methods for transferring polygenic risk scores across global populations. Nat. Rev. Genet. 25, 8–25 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mostafavi, H. et al. Variable prediction accuracy of polygenic scores within an ancestry group. eLife 9, e48376 (2020).

  • Smith, K. et al. Multi-ancestry polygenic mechanisms of type 2 diabetes. Nat. Med. 30, 1065–1074 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Carroll, S. R. et al. The CARE principles for indigenous data governance. Open Scholarship Press Curated Volumes: Policy (2023).

  • Ávila-Arcos, M. C., de la Fuente Castro, C., Nieves-Colón, M. A. & Raghavan, M. Recommendations for sustainable ancient DNA research in the Global South: voices from a new generation of paleogenomicists. Front. Genet. 13, 880170 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wallace, D. C. & Fan, W. Energetics, epigenetics, mitochondrial genetics. Mitochondrion 10, 12–31 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gorman, G. S. et al. Mitochondrial diseases. Nat. Rev. Dis. Primers 2, 16080 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Stewart, J. B. & Chinnery, P. F. The dynamics of mitochondrial DNA heteroplasmy: implications for human health and disease. Nat. Rev. Genet. 16, 530–542 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Malik, A. N. & Czajka, A. Is mitochondrial DNA content a potential biomarker of mitochondrial dysfunction? Mitochondrion 13, 481–492 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jones, S. W., Ball, A. L., Chadwick, A. E. & Alfirevic, A. The role of miitochondrial DNA variation in drug response: a systematic review. Front. Genet. 12, 698825 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Di Lorenzo, C. et al. Mitochondrial DNA haplogroups influence the therapeutic response to riboflavin in migraineurs. Neurology 72, 1588–1594 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Sainero-Alcolado, L., Liaño-Pons, J., Ruiz-Pérez, M. V. & Arsenian-Henriksson, M. Targeting mitochondrial metabolism for precision medicine in cancer. Cell Death Differ. 29, 1304–1317 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Falk, M. J. The pursuit of precision mitochondrial medicine: Harnessing preclinical cellular and animal models to optimize mitochondrial disease therapeutic discovery. J. Inherit. Metab. Dis. 44, 312–324 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shen, F.-C. et al. Mitochondrial haplogroups have a better correlation to insulin requirement than nuclear genetic variants for type 2 diabetes mellitus in Taiwanese individuals. J. Diabetes Investig. 13, 201–208 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Domínguez-de-la-Cruz, E. et al. Reduced mitochondrial DNA copy number is associated with the haplogroup, and some clinical features of breast cancer in Mexican patients. Gene 761, 145047 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Mitchell, S. L. et al. Investigating the relationship between mitochondrial genetic variation and cardiovascular-related traits to develop a framework for mitochondrial phenome-wide association studies. BioData Min. 7, 6 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bastarache, L., Denny, J. C. & Roden, D. M. Phenome-wide association studies. JAMA 327, 75–76 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Harrison, P. W. et al. Ensembl 2024. Nucleic Acids Res. 52, D891–D899 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pemberton, T. J. et al. Genomic patterns of homozygosity in worldwide human populations. Am. J. Hum. Genet. 91, 275–292 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Marcus, J. H. & Novembre, J. Visualizing the geography of genetic variants. Bioinformatics 33, 594–595 (2016).

    Article 
    PubMed Central 

    Google Scholar 




  • Source link

    Add a comment

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Keep Up to Date with the Most Important News

    By pressing the Subscribe button, you confirm that you have read and are agreeing to our Privacy Policy and Terms of Use