Frey, U. et al. Switch-matrix-based high-density microelectrode array in CMOS technology. IEEE J. Solid-State Circuits 45, 467–482 (2010).
Google Scholar
Raducanu, B. C. et al. Time multiplexed active neural probe with 1356 parallel recording sites. Sensors 17, 2388 (2017).
Jun, J. J. et al. Fully integrated silicon probes for high-density recording of neural activity. Nature 551, 232–236 (2017).
Google Scholar
Fiáth, R. et al. Fine-scale mapping of cortical laminar activity during sleep slow oscillations using high-density linear silicon probes. J. Neurosci. Methods 316, 58–70 (2019).
Google Scholar
Angotzi, G. N. et al. SiNAPS: an implantable active pixel sensor CMOS-probe for simultaneous large-scale neural recordings. Biosens. Bioelectron. 126, 355–364 (2019).
Google Scholar
Steinmetz, N. A. et al. Neuropixels 2.0: A miniaturized high-density probe for stable, long-term brain recordings. Science 372, eabf4588 (2021).
Google Scholar
Jia, X. et al. High-density extracellular probes reveal dendritic backpropagation and facilitate neuron classification. J. Neurophysiol. 121, 1831–1847 (2019).
Google Scholar
Trepka, E. B., Zhu, S., Xia, R., Chen, X. & Moore, T. Functional interactions among neurons within single columns of macaque V1. eLife 11, e79322 (2022).
Google Scholar
Trautmann, E. M. et al. Accurate estimation of neural population dynamics without spike sorting. Neuron 103, 292–308 (2019).
Google Scholar
Inagaki, H. K. et al. A midbrain-thalamus-cortex circuit reorganizes cortical dynamics to initiate movement. Cell 185, 1065–1081 (2022).
Google Scholar
Chettih, S. N., Mackevicius, E. L., Hale, S. & Aronov, D. Barcoding of episodic memories in the hippocampus of a food-caching bird. Cell 187, 1922–1935 (2024).
Google Scholar
Steinmetz, N. A., Zatka-Haas, P., Carandini, M. & Harris, K. D. Distributed coding of choice, action and engagement across the mouse brain. Nature 576, 266–273 (2019).
Google Scholar
Paulk, A. C. et al. Large-scale neural recordings with single neuron resolution using neuropixels probes in human cortex. Nat. Neurosci. 25, 252–263 (2022).
Google Scholar
Chung, J. E. et al. High-density single-unit human cortical recordings using the Neuropixels probe. Neuron 110, 2409–2421 (2022).
Steinmetz, N. A., Koch, C., Harris, K. D. & Carandini, M. Challenges and opportunities for large-scale electrophysiology with neuropixels probes. Curr. Opin. Neurobiol. 50, 92–100 (2018).
Google Scholar
Pachitariu, M., Steinmetz, N., Kadir, S., Carandini, M. & Harris, K. D. Kilosort: realtime spike-sorting for extracellular electrophysiology with hundreds of channels. Preprint at bioRxiv https://doi.org/10.1101/061481 (2016).
Buccino, A. P. et al. Spikeinterface, a unified framework for spike sorting. eLife 9, e61834 (2020).
Google Scholar
International Brain Laboratory. Spike sorting pipeline for the International Brain Laboratory. Figshare https://doi.org/10.6084/m9.figshare.19705522.v4 (2022).
Ashburner, J. A fast diffeomorphic image registration algorithm. Neuroimage 38, 95–113 (2007).
Google Scholar
Sotiras, A., Davatzikos, C. & Paragios, N. Deformable medical image registration: a survey. IEEE Trans. Med. Imaging 32, 1153–1190 (2013).
Google Scholar
Arganda-Carreras, I. et al. Consistent and elastic registration of histological sections using vector-spline regularization. In Proceedings of the Second ECCV International Conference on Computer Vision Approaches to Medical Image Analysis, CVAMIA ’06, 85–95 https://doi.org/10.1007/11889762_8 (Springer-Verlag, 2006).
AVANTS, B., EPSTEIN, C., GROSSMAN, M. & GEE, J. Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 12, 26–41 (2008).
Google Scholar
Feydy, J., Charlier, B., Vialard, F. -X. & Peyré, G. Optimal transport for diffeomorphic registration. In Medical Image Computing and Computer Assisted Intervention 2017: 20th International Conference, Quebec City, QC, Canada, September 11–13, 2017, Proceedings, Part I, 291–299 https://doi.org/10.1007/978-3-319-66182-7_34 (Springer-Verlag, 2017).
Kutten, K. S. et al. A large deformation diffeomorphic approach to registration of clarity images via mutual information. In Descoteaux, M. et al. (eds.) Medical Image Computing and Computer Assisted Intervention 2017, 275–282 (Springer, 2017).
Dubbs, A., Guevara, J. & Yuste, R. moco: fast motion correction for calcium imaging. Front. Neuroinform. 10, 6 (2016).
Google Scholar
Pnevmatikakis, E. A. & Giovannucci, A. NormCoRRe: an online algorithm for piecewise rigid motion correction of calcium imaging data. J. Neurosci. Methods 291, 83–94 (2017).
Google Scholar
Pachitariu, M. et al. Suite2p: beyond 10,000 neurons with standard two-photon microscopy. Preprint at bioRxiv https://doi.org/10.1101/061507 (2017).
Archip, N. et al. Non-rigid alignment of preoperative mri, fmri, and dt-mri with intra-operative mri for enhanced visualization and navigation in image-guided neurosurgery. Neuroimage 35, 609–624 (2007).
Google Scholar
Pachitariu, M., Sridhar, S., Pennington, J. & Stringer, C. Spike sorting with Kilosort4. Nat. Methods 21, 914–921 (2024).
Google Scholar
Lewis, J. Fast template matching. Vision Interface 10, 120–123 (1995).
Garcia, S. et al. A modular implementation to handle and benchmark drift correction for high-density extracellular recordings. eNeuro ENEURO.0229–23.2023 https://doi.org/10.1523/ENEURO.0229-23.2023 (2024).
Varol, E. et al. Decentralized motion inference and registration of neuropixel data. In ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 1085–1089 (2021).
Windolf, C. et al. Robust online multiband drift estimation in electrophysiology data. In ICASSP 2023–2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 1–5 (2023).
Trautmann, E. M. et al. Large-scale high-density brain-wide neural recording in nonhuman primates. Preprint at bioRxiv https://doi.org/10.1101/2023.02.01.526664 (2023).
International Brain Laboratory, et al. Reproducibility of in vivo electrophysiological measurements in mice. eLife 13, RP100840 (2024).
Ye, Z. et al. Ultra-high density electrodes improve detection, yield, and cell type specificity of brain recordings. Preprint at bioRxiv https://doi.org/10.1101/2023.08.23.554527 (2023).
Boussard, J. et al. DARTsort: a modular drift tracking spike sorter for high-density multi-electrode probes. Preprint at bioRxiv https://doi.org/10.1101/2023.08.11.553023 (2023).
Boussard, J., Varol, E., Lee, H. D., Dethe, N. & Paninski, L. Three-dimensional spike localization and improved motion correction for Neuropixels recordings. In (eds. Ranzato, M. et al.) Advances in Neural Information Processing Systems, 34, 22095–22105 https://proceedings.neurips.cc/paper_files/paper/2021/file/b950ea26ca12daae142bd74dba4427c8-Paper.pdf (Curran Associates, 2021).
Mechler, F., Victor, J. D., Ohiorhenuan, I., Schmid, A. M. & Hu, Q. Three-dimensional localization of neurons in cortical tetrode recordings. J. Neurophysiol. 106, 828–848 (2011).
Google Scholar
Hurwitz, C., Xu, K., Srivastava, A., Buccino, A. & Hennig, M. Scalable spike source localization in extracellular recordings using amortized variational inference. In Wallach, H. et al. (eds.) Advances in Neural Information Processing Systems, 32 https://proceedings.neurips.cc/paper_files/paper/2019/file/f12f2b34a0c3174269c19e21c07dee68-Paper.pdf (Curran Associates, 2019).
Buccino, A. P. et al. Combining biophysical modeling and deep learning for multielectrode array neuron localization and classification. J. Neurophysiol. 120, 1212–1232 (2018).
Google Scholar
Horváth, C., Tóth, L. F., Ulbert, I. & Fiáth, R. Dataset of cortical activity recorded with high spatial resolution from anesthetized rats. Sci. Data https://doi.org/10.1038/s41597-021-00970-3 (2021-07).
Tal, I. & Abeles, M. Cleaning MEG artifacts using external cues. J. Neurosci. Methods 217, 31–38 (2013).
Google Scholar
Klug, M. & Kloosterman, N. A. Zapline-plus: a zapline extension for automatic and adaptive removal of frequency-specific noise artifacts in M/EEG. Human Brain Mapp. 43, 2743–2758 (2022).
Google Scholar
de Cheveigné, A. ZapLine: a simple and effective method to remove power line artifacts. NeuroImage 207, 116356 (2020).
Google Scholar
Ulbert, I., Halgren, E., Heit, G. & Karmos, G. Multiple microelectrode-recording system for human intracortical applications. J. Neurosci. Methods 106, 69–79 (2001).
Google Scholar
Csercsa, R. et al. Laminar analysis of slow wave activity in humans. Brain 133, 2814–2829 (2010).
Google Scholar
Baudena, P., Halgren, E., Heit, G. & Clarke, J. M. Intracerebral potentials to rare target and distractor auditory and visual stimuli. III. frontal cortex. Electroencephal. Clin. Neurophysiol. 94, 251–264 (1995).
Google Scholar
Fabo, D. et al. The role of superficial and deep layers in the generation of high frequency oscillations and interictal epileptiform discharges in the human cortex. Sci. Rep. https://doi.org/10.1038/s41598-022-22497-2 (2023).
Lewis, L. D. et al. Local cortical dynamics of burst suppression in the anaesthetized brain. Brain 136, 2727–2737 (2013).
Google Scholar
Westover, M. B. et al. Real-time segmentation of burst suppression patterns in critical care EEG monitoring. J. Neurosci. Methods 219, 131–141 (2013).
Google Scholar
Salami, P., Borzello, M., Kramer, M. A., Westover, M. B. & Cash, S. S. Quantifying seizure termination patterns reveals limited pathways to seizure end. Neurobiol. Dis. 165, 105645 (2022).
Google Scholar
Wei, Y. et al. Associations between in vitro, in vivo and in silico cell classes in mouse primary visual cortex. Nat. Commun. 14, 2344 (2023).
Google Scholar
Buccino, A. P. & Einevoll, G. T. MEArec: a fast and customizable testbench simulator for ground-truth extracellular spiking activity. Neuroinformatics 19, 185–204 (2021).
Google Scholar
Choi, J. et al. Optimal adaptive electrode selection to maximize simultaneously recorded neuron yield. In Larochelle, H. et al. (eds.) Advances in Neural Information Processing Systems, 33, 6160–6171 https://proceedings.neurips.cc/paper/2020/hash/445e1050156c6ae8c082a8422bb7dfc0-Abstract.html (Curran Associates, 2020).
Melin, M. D. et al. Large scale, simultaneous, chronic neural recordings from multiple brain areas. Preprint at bioRxiv https://doi.org/10.1101/2023.12.22.572441 (2024).
Hill, D. N., Mehta, S. B. & Kleinfeld, D. Quality metrics to accompany spike sorting of extracellular signals. J. Neurosci. 31, 8699–8705 (2011).
Google Scholar
Yuan, A. et al. Multi-day neuron tracking in high density electrophysiology recordings using EMD. eLife https://doi.org/10.7554/eLife.92495.2 (2024).
van Beest, E. H., Bimbard, C., Fabre, J. M. J. et al. Tracking neurons across days with high-density probes. Nat. Methods https://doi.org/10.1038/s41592-024-02440-1 (2024).
Savitzky, B. H. et al. Image registration of low signal-to-noise cryo-STEM data. Ultramicroscopy 191, 56–65 (2018).
Google Scholar
Paninski, L. et al. A new look at state-space models for neural data. J. Comput. Neurosci. 29, 107–126 (2009).
Google Scholar
McInnes, L., Healy, J. & Astels, S. hdbscan: hierarchical density based clustering. J. Open Source Softw. 2, 205 (2017).
Google Scholar
Lee, J. et al. Yass: Yet another spike sorter applied to large-scale multi-electrode array recordings in primate retina. Preprint at bioRxiv https://doi.org/10.1101/2020.03.18.997924 (2020).
Gold, C., Girardin, C. C., Martin, K. A. & Koch, C. High-amplitude positive spikes recorded extracellularly in cat visual cortex. J. Neurophysiol. 102, 3340–3351 (2009).
Google Scholar
Barry, J. M. Axonal activity in vivo: technical considerations and implications for the exploration of neural circuits in freely moving animals. Front. Neurosci. 9, 153 (2015).
Google Scholar
Paulk, A. C. et al. Microscale physiological events on the human cortical surface. Cereb. Cortex 31, 3678–3700 (2021).
Google Scholar
Jamali, M. et al. Dorsolateral prefrontal neurons mediate subjective decisions and their variation in humans. Nat. Neurosci. 22, 1010–1020 (2019).
Google Scholar
Yang, J. C. et al. Microscale dynamics of electrophysiological markers of epilepsy. Clin. Neurophysiol. 132, 2916–2931 (2021).
Google Scholar
Lopez, C. M. et al. A neural probe with up to 966 electrodes and up to 384 configurable channels in 0.13 μm SOI CMOS. IEEE Trans. Biomed. Circuits Syst. 11, 510–522 (2017).
Google Scholar
Siegle, J. H. et al. Open Ephys: an open-source, plugin-based platform for multichannel electrophysiology. J. Neural Eng. 14, 045003 (2017).
Google Scholar
Brainard, D. H. The psychophysics toolbox. Spatial Vis. 10, 433–436 (1997).
Google Scholar
Reid, R. C., Victor, J. D. & Shapley, R. M. The use of m-sequences in the analysis of visual neurons: linear receptive field properties. Vis. Neurosci. 14, 1015–1027 (1997).
Google Scholar
Sutter, E. E. Imaging visual function with the multifocal m-sequence technique. Vision Res. 41, 1241–1255 (2001).
Google Scholar
Buračas, G. T. & Boynton, G. M. Efficient design of event-related fMRI experiments using m-sequences. NeuroImage 16, 801–813 (2002).
Google Scholar
Tabuchi, H. et al. Study of the visual evoked magnetic field with the m-sequence technique. Invest. Ophthalmol. Vis. Sci. 43, 2045–2054 (2002).
Google Scholar
Oostenveld, R., Fries, P., Maris, E. & Schoffelen, J.-M. FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput. Intellig. Neurosci. 2011, 156869 (2011).
Google Scholar
Fiáth, R. et al. A silicon-based neural probe with densely-packed low-impedance titanium nitride microelectrodes for ultrahigh-resolution in vivo recordings. Biosens. Bioelectron. 106, 86–92 (2018).
Google Scholar
Movshon, J. A., Kiorpes, L., Hawken, M. J. & Cavanaugh, J. R. Functional maturation of the macaque’s lateral geniculate nucleus. J. Neurosci. 25, 2712–2722 (2005).
Google Scholar
Yang, L., Lee, K., Villagracia, J. & Masmanidis, S. C. Open source silicon microprobes for high throughput neural recording. J. Neural Eng. 17, 016036 (2020).
Google Scholar
Paszke, A. et al. Pytorch: an imperative style, high-performance deep learning library. In Wallach, H. et al. (eds.) Advances in Neural Information Processing Systems 32, 8024–8035 http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf (Curran Associates, 2019).
Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).
Google Scholar