DREDge: robust motion correction for high-density extracellular recordings across species

DREDge: robust motion correction for high-density extracellular recordings across species DREDge: robust motion correction for high-density extracellular recordings across species


  • Frey, U. et al. Switch-matrix-based high-density microelectrode array in CMOS technology. IEEE J. Solid-State Circuits 45, 467–482 (2010).

    Article 

    Google Scholar 

  • Raducanu, B. C. et al. Time multiplexed active neural probe with 1356 parallel recording sites. Sensors 17, 2388 (2017).

  • Jun, J. J. et al. Fully integrated silicon probes for high-density recording of neural activity. Nature 551, 232–236 (2017).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Fiáth, R. et al. Fine-scale mapping of cortical laminar activity during sleep slow oscillations using high-density linear silicon probes. J. Neurosci. Methods 316, 58–70 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Angotzi, G. N. et al. SiNAPS: an implantable active pixel sensor CMOS-probe for simultaneous large-scale neural recordings. Biosens. Bioelectron. 126, 355–364 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Steinmetz, N. A. et al. Neuropixels 2.0: A miniaturized high-density probe for stable, long-term brain recordings. Science 372, eabf4588 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Jia, X. et al. High-density extracellular probes reveal dendritic backpropagation and facilitate neuron classification. J. Neurophysiol. 121, 1831–1847 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Trepka, E. B., Zhu, S., Xia, R., Chen, X. & Moore, T. Functional interactions among neurons within single columns of macaque V1. eLife 11, e79322 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Trautmann, E. M. et al. Accurate estimation of neural population dynamics without spike sorting. Neuron 103, 292–308 (2019).

    Article 

    Google Scholar 

  • Inagaki, H. K. et al. A midbrain-thalamus-cortex circuit reorganizes cortical dynamics to initiate movement. Cell 185, 1065–1081 (2022).

    Article 

    Google Scholar 

  • Chettih, S. N., Mackevicius, E. L., Hale, S. & Aronov, D. Barcoding of episodic memories in the hippocampus of a food-caching bird. Cell 187, 1922–1935 (2024).

    Article 

    Google Scholar 

  • Steinmetz, N. A., Zatka-Haas, P., Carandini, M. & Harris, K. D. Distributed coding of choice, action and engagement across the mouse brain. Nature 576, 266–273 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Paulk, A. C. et al. Large-scale neural recordings with single neuron resolution using neuropixels probes in human cortex. Nat. Neurosci. 25, 252–263 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Chung, J. E. et al. High-density single-unit human cortical recordings using the Neuropixels probe. Neuron 110, 2409–2421 (2022).

  • Steinmetz, N. A., Koch, C., Harris, K. D. & Carandini, M. Challenges and opportunities for large-scale electrophysiology with neuropixels probes. Curr. Opin. Neurobiol. 50, 92–100 (2018).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Pachitariu, M., Steinmetz, N., Kadir, S., Carandini, M. & Harris, K. D. Kilosort: realtime spike-sorting for extracellular electrophysiology with hundreds of channels. Preprint at bioRxiv https://doi.org/10.1101/061481 (2016).

  • Buccino, A. P. et al. Spikeinterface, a unified framework for spike sorting. eLife 9, e61834 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • International Brain Laboratory. Spike sorting pipeline for the International Brain Laboratory. Figshare https://doi.org/10.6084/m9.figshare.19705522.v4 (2022).

  • Ashburner, J. A fast diffeomorphic image registration algorithm. Neuroimage 38, 95–113 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Sotiras, A., Davatzikos, C. & Paragios, N. Deformable medical image registration: a survey. IEEE Trans. Med. Imaging 32, 1153–1190 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Arganda-Carreras, I. et al. Consistent and elastic registration of histological sections using vector-spline regularization. In Proceedings of the Second ECCV International Conference on Computer Vision Approaches to Medical Image Analysis, CVAMIA ’06, 85–95 https://doi.org/10.1007/11889762_8 (Springer-Verlag, 2006).

  • AVANTS, B., EPSTEIN, C., GROSSMAN, M. & GEE, J. Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 12, 26–41 (2008).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Feydy, J., Charlier, B., Vialard, F. -X. & Peyré, G. Optimal transport for diffeomorphic registration. In Medical Image Computing and Computer Assisted Intervention 2017: 20th International Conference, Quebec City, QC, Canada, September 11–13, 2017, Proceedings, Part I, 291–299 https://doi.org/10.1007/978-3-319-66182-7_34 (Springer-Verlag, 2017).

  • Kutten, K. S. et al. A large deformation diffeomorphic approach to registration of clarity images via mutual information. In Descoteaux, M. et al. (eds.) Medical Image Computing and Computer Assisted Intervention 2017, 275–282 (Springer, 2017).

  • Dubbs, A., Guevara, J. & Yuste, R. moco: fast motion correction for calcium imaging. Front. Neuroinform. 10, 6 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pnevmatikakis, E. A. & Giovannucci, A. NormCoRRe: an online algorithm for piecewise rigid motion correction of calcium imaging data. J. Neurosci. Methods 291, 83–94 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Pachitariu, M. et al. Suite2p: beyond 10,000 neurons with standard two-photon microscopy. Preprint at bioRxiv https://doi.org/10.1101/061507 (2017).

  • Archip, N. et al. Non-rigid alignment of preoperative mri, fmri, and dt-mri with intra-operative mri for enhanced visualization and navigation in image-guided neurosurgery. Neuroimage 35, 609–624 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Pachitariu, M., Sridhar, S., Pennington, J. & Stringer, C. Spike sorting with Kilosort4. Nat. Methods 21, 914–921 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Lewis, J. Fast template matching. Vision Interface 10, 120–123 (1995).

  • Garcia, S. et al. A modular implementation to handle and benchmark drift correction for high-density extracellular recordings. eNeuro ENEURO.0229–23.2023 https://doi.org/10.1523/ENEURO.0229-23.2023 (2024).

  • Varol, E. et al. Decentralized motion inference and registration of neuropixel data. In ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 1085–1089 (2021).

  • Windolf, C. et al. Robust online multiband drift estimation in electrophysiology data. In ICASSP 2023–2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 1–5 (2023).

  • Trautmann, E. M. et al. Large-scale high-density brain-wide neural recording in nonhuman primates. Preprint at bioRxiv https://doi.org/10.1101/2023.02.01.526664 (2023).

  • International Brain Laboratory, et al. Reproducibility of in vivo electrophysiological measurements in mice. eLife 13, RP100840 (2024).

  • Ye, Z. et al. Ultra-high density electrodes improve detection, yield, and cell type specificity of brain recordings. Preprint at bioRxiv https://doi.org/10.1101/2023.08.23.554527 (2023).

  • Boussard, J. et al. DARTsort: a modular drift tracking spike sorter for high-density multi-electrode probes. Preprint at bioRxiv https://doi.org/10.1101/2023.08.11.553023 (2023).

  • Boussard, J., Varol, E., Lee, H. D., Dethe, N. & Paninski, L. Three-dimensional spike localization and improved motion correction for Neuropixels recordings. In (eds. Ranzato, M. et al.) Advances in Neural Information Processing Systems, 34, 22095–22105 https://proceedings.neurips.cc/paper_files/paper/2021/file/b950ea26ca12daae142bd74dba4427c8-Paper.pdf (Curran Associates, 2021).

  • Mechler, F., Victor, J. D., Ohiorhenuan, I., Schmid, A. M. & Hu, Q. Three-dimensional localization of neurons in cortical tetrode recordings. J. Neurophysiol. 106, 828–848 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hurwitz, C., Xu, K., Srivastava, A., Buccino, A. & Hennig, M. Scalable spike source localization in extracellular recordings using amortized variational inference. In Wallach, H. et al. (eds.) Advances in Neural Information Processing Systems, 32 https://proceedings.neurips.cc/paper_files/paper/2019/file/f12f2b34a0c3174269c19e21c07dee68-Paper.pdf (Curran Associates, 2019).

  • Buccino, A. P. et al. Combining biophysical modeling and deep learning for multielectrode array neuron localization and classification. J. Neurophysiol. 120, 1212–1232 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Horváth, C., Tóth, L. F., Ulbert, I. & Fiáth, R. Dataset of cortical activity recorded with high spatial resolution from anesthetized rats. Sci. Data https://doi.org/10.1038/s41597-021-00970-3 (2021-07).

  • Tal, I. & Abeles, M. Cleaning MEG artifacts using external cues. J. Neurosci. Methods 217, 31–38 (2013).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Klug, M. & Kloosterman, N. A. Zapline-plus: a zapline extension for automatic and adaptive removal of frequency-specific noise artifacts in M/EEG. Human Brain Mapp. 43, 2743–2758 (2022).

    Article 

    Google Scholar 

  • de Cheveigné, A. ZapLine: a simple and effective method to remove power line artifacts. NeuroImage 207, 116356 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Ulbert, I., Halgren, E., Heit, G. & Karmos, G. Multiple microelectrode-recording system for human intracortical applications. J. Neurosci. Methods 106, 69–79 (2001).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Csercsa, R. et al. Laminar analysis of slow wave activity in humans. Brain 133, 2814–2829 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Baudena, P., Halgren, E., Heit, G. & Clarke, J. M. Intracerebral potentials to rare target and distractor auditory and visual stimuli. III. frontal cortex. Electroencephal. Clin. Neurophysiol. 94, 251–264 (1995).

    Article 
    CAS 

    Google Scholar 

  • Fabo, D. et al. The role of superficial and deep layers in the generation of high frequency oscillations and interictal epileptiform discharges in the human cortex. Sci. Rep. https://doi.org/10.1038/s41598-022-22497-2 (2023).

  • Lewis, L. D. et al. Local cortical dynamics of burst suppression in the anaesthetized brain. Brain 136, 2727–2737 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Westover, M. B. et al. Real-time segmentation of burst suppression patterns in critical care EEG monitoring. J. Neurosci. Methods 219, 131–141 (2013).

    Article 
    PubMed Central 

    Google Scholar 

  • Salami, P., Borzello, M., Kramer, M. A., Westover, M. B. & Cash, S. S. Quantifying seizure termination patterns reveals limited pathways to seizure end. Neurobiol. Dis. 165, 105645 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wei, Y. et al. Associations between in vitro, in vivo and in silico cell classes in mouse primary visual cortex. Nat. Commun. 14, 2344 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Buccino, A. P. & Einevoll, G. T. MEArec: a fast and customizable testbench simulator for ground-truth extracellular spiking activity. Neuroinformatics 19, 185–204 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Choi, J. et al. Optimal adaptive electrode selection to maximize simultaneously recorded neuron yield. In Larochelle, H. et al. (eds.) Advances in Neural Information Processing Systems, 33, 6160–6171 https://proceedings.neurips.cc/paper/2020/hash/445e1050156c6ae8c082a8422bb7dfc0-Abstract.html (Curran Associates, 2020).

  • Melin, M. D. et al. Large scale, simultaneous, chronic neural recordings from multiple brain areas. Preprint at bioRxiv https://doi.org/10.1101/2023.12.22.572441 (2024).

  • Hill, D. N., Mehta, S. B. & Kleinfeld, D. Quality metrics to accompany spike sorting of extracellular signals. J. Neurosci. 31, 8699–8705 (2011).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Yuan, A. et al. Multi-day neuron tracking in high density electrophysiology recordings using EMD. eLife https://doi.org/10.7554/eLife.92495.2 (2024).

  • van Beest, E. H., Bimbard, C., Fabre, J. M. J. et al. Tracking neurons across days with high-density probes. Nat. Methods https://doi.org/10.1038/s41592-024-02440-1 (2024).

  • Savitzky, B. H. et al. Image registration of low signal-to-noise cryo-STEM data. Ultramicroscopy 191, 56–65 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Paninski, L. et al. A new look at state-space models for neural data. J. Comput. Neurosci. 29, 107–126 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McInnes, L., Healy, J. & Astels, S. hdbscan: hierarchical density based clustering. J. Open Source Softw. 2, 205 (2017).

    Article 

    Google Scholar 

  • Lee, J. et al. Yass: Yet another spike sorter applied to large-scale multi-electrode array recordings in primate retina. Preprint at bioRxiv https://doi.org/10.1101/2020.03.18.997924 (2020).

  • Gold, C., Girardin, C. C., Martin, K. A. & Koch, C. High-amplitude positive spikes recorded extracellularly in cat visual cortex. J. Neurophysiol. 102, 3340–3351 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Barry, J. M. Axonal activity in vivo: technical considerations and implications for the exploration of neural circuits in freely moving animals. Front. Neurosci. 9, 153 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Paulk, A. C. et al. Microscale physiological events on the human cortical surface. Cereb. Cortex 31, 3678–3700 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jamali, M. et al. Dorsolateral prefrontal neurons mediate subjective decisions and their variation in humans. Nat. Neurosci. 22, 1010–1020 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Yang, J. C. et al. Microscale dynamics of electrophysiological markers of epilepsy. Clin. Neurophysiol. 132, 2916–2931 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lopez, C. M. et al. A neural probe with up to 966 electrodes and up to 384 configurable channels in 0.13 μm SOI CMOS. IEEE Trans. Biomed. Circuits Syst. 11, 510–522 (2017).

    Article 

    Google Scholar 

  • Siegle, J. H. et al. Open Ephys: an open-source, plugin-based platform for multichannel electrophysiology. J. Neural Eng. 14, 045003 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Brainard, D. H. The psychophysics toolbox. Spatial Vis. 10, 433–436 (1997).

    Article 
    CAS 

    Google Scholar 

  • Reid, R. C., Victor, J. D. & Shapley, R. M. The use of m-sequences in the analysis of visual neurons: linear receptive field properties. Vis. Neurosci. 14, 1015–1027 (1997).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Sutter, E. E. Imaging visual function with the multifocal m-sequence technique. Vision Res. 41, 1241–1255 (2001).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Buračas, G. T. & Boynton, G. M. Efficient design of event-related fMRI experiments using m-sequences. NeuroImage 16, 801–813 (2002).

    Article 
    PubMed 

    Google Scholar 

  • Tabuchi, H. et al. Study of the visual evoked magnetic field with the m-sequence technique. Invest. Ophthalmol. Vis. Sci. 43, 2045–2054 (2002).

    PubMed 

    Google Scholar 

  • Oostenveld, R., Fries, P., Maris, E. & Schoffelen, J.-M. FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput. Intellig. Neurosci. 2011, 156869 (2011).

    Article 

    Google Scholar 

  • Fiáth, R. et al. A silicon-based neural probe with densely-packed low-impedance titanium nitride microelectrodes for ultrahigh-resolution in vivo recordings. Biosens. Bioelectron. 106, 86–92 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Movshon, J. A., Kiorpes, L., Hawken, M. J. & Cavanaugh, J. R. Functional maturation of the macaque’s lateral geniculate nucleus. J. Neurosci. 25, 2712–2722 (2005).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Yang, L., Lee, K., Villagracia, J. & Masmanidis, S. C. Open source silicon microprobes for high throughput neural recording. J. Neural Eng. 17, 016036 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Paszke, A. et al. Pytorch: an imperative style, high-performance deep learning library. In Wallach, H. et al. (eds.) Advances in Neural Information Processing Systems 32, 8024–8035 http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf (Curran Associates, 2019).

  • Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 




  • Source link

    Add a comment

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Keep Up to Date with the Most Important News

    By pressing the Subscribe button, you confirm that you have read and are agreeing to our Privacy Policy and Terms of Use