CRISPR targeting of SNPs associated with age-related macular degeneration in ARPE-19 cells: a potential model for manipulating the complement system

CRISPR targeting of SNPs associated with age-related macular degeneration in ARPE-19 cells: a potential model for manipulating the complement system CRISPR targeting of SNPs associated with age-related macular degeneration in ARPE-19 cells: a potential model for manipulating the complement system


  • Bourne RR, Jonas JB, Flaxman SR, Keeffe J, Leasher J, Naidoo K, et al. Prevalence and causes of vision loss in high-income countries and in Eastern and Central Europe: 1990-2010. Br J Ophthalmol. 2014;98:629–38.

    Article 
    PubMed 

    Google Scholar 

  • Wong WL, Su X, Li X, Cheung CM, Klein R, Cheng CY, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health. 2014;2:e106–16.

    Article 
    PubMed 

    Google Scholar 

  • Anderson DH, Mullins RF, Hageman GS, Johnson LV. A role for local inflammation in the formation of drusen in the aging eye. Am J Ophthalmol. 2002;134:411–31.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C, et al. Complement factor H polymorphism in age-related macular degeneration. Science. 2005;308:385–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Edwards AO, Ritter R, Abel KJ, Manning A, Panhuysen C, Farrer LA. Complement factor H polymorphism and age-related macular degeneration. Science. 2005;308:421–4.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lin JM, Tsai YY, Wan L, Lin HJ, Tsai Y, Lee CC, et al. Complement factor H variant increases the risk for early age-related macular degeneration. Retina. 2008;28:1416–20.

    Article 
    PubMed 

    Google Scholar 

  • Sivaprasad S, Chong NV. The complement system and age-related macular degeneration. Eye. 2006;20:867–72.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jiang XR, Jimenez G, Chang E, Frolkis M, Kusler B, Sage M, et al. Telomerase expression in human somatic cells does not induce changes associated with a transformed phenotype. Nat Genet. 1999;21:111–4.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB, et al. Extension of life-span by introduction of telomerase into normal human cells. Science. 1998;279:349–52.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nabi IR, Mathews AP, Cohen-Gould L, Gundersen D, Rodriguez-Boulan E. Immortalization of polarized rat retinal pigment epithelium. J Cell Sci. 1993;104:37–49.

    Article 
    PubMed 

    Google Scholar 

  • Dunn KC, AotakiKeen AE, Putkey FR, Hjelmeland LM. ARPE-19, a human retinal pigment epithelial cell line with differentiated properties. Exp Eye Res. 1996;62:155–69.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Samuel W, Jaworski C, Postnikova OA, Kutty RK, Duncan T, Tan LX, et al. Appropriately differentiated ARPE-19 cells regain phenotype and gene expression profiles similar to those of native RPE cells. Mol Vis. 2017;23:60–89.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lo MW, Woodruff TM. Complement: Bridging the innate and adaptive immune systems in sterile inflammation. J Leukoc Biol. 2020;108:339–51.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Merle NS, Noe R, Halbwachs-Mecarelli L, Fremeaux-Bacchi V, Roumenina LT. Complement System Part II: Role in Immunity. Front Immunol. 2015;6:257.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Noris M, Remuzzi G. Overview of complement activation and regulation. Semin Nephrol. 2013;33:479–92.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nauta AJ, Daha MR, van Kooten C, Roos A. Recognition and clearance of apoptotic cells: a role for complement and pentraxins. Trends Immunol. 2003;24:148–54.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Walport MJ. Complement. First of two parts. N Engl J Med. 2001;344:1058–66.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ricklin D, Lambris JD. Complement in immune and inflammatory disorders: pathophysiological mechanisms. J Immunol. 2013;190:3831–8.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • de Jong S, Gagliardi G, Garanto A, de Breuk A, Lechanteur YTE, Katti S, et al. Implications of genetic variation in the complement system in age-related macular degeneration. Prog Retin Eye Res. 2021;84:100952.

    Article 
    PubMed 

    Google Scholar 

  • Bhutto I, Lutty G. Understanding age-related macular degeneration (AMD): Relationships between the photoreceptor/retinal pigment epithelium/Bruch’s membrane/choriocapillaris complex. Mol Aspects Med. 2012;33:295–317.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • van Leeuwen EM, Emri E, Merle BMJ, Colijn JM, Kersten E, Cougnard-Gregoire A, et al. A new perspective on lipid research in age-related macular degeneration. Prog Retin Eye Res. 2018;67:56–86.

    Article 
    PubMed 

    Google Scholar 

  • Haines JL, Hauser MA, Schmidt S, Scott WK, Olson LM, Gallins P, et al. Complement factor H variant increases the risk of age-related macular degeneration. Science. 2005;308:419–21.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hageman GS, Anderson DH, Johnson LV, Hancox LS, Taiber AJ, Hardisty LI, et al. A common haplotype in the complement regulatory gene factor H (HF1/CFH) predisposes individuals to age-related macular degeneration. Proc Natl Acad Sci USA. 2005;102:7227–32.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fritsche LG, Igl W, Bailey JN, Grassmann F, Sengupta S, Bragg-Gresham JL, et al. A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants. Nat Genet. 2016;48:134–43.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fritsche LG, Chen W, Schu M, Yaspan BL, Yu Y, Thorleifsson G, et al. Seven new loci associated with age-related macular degeneration. Nat Genet. 2013;45:433–9.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gold B, Merriam JE, Zernant J, Hancox LS, Taiber AJ, Gehrs K, et al. Variation in factor B (BF) and complement component 2 (C2) genes is associated with age-related macular degeneration. Nat Genet. 2006;38:458–62.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Maller JB, Fagerness JA, Reynolds RC, Neale BM, Daly MJ, Seddon JM. Variation in complement factor 3 is associated with risk of age-related macular degeneration. Nat Genet. 2007;39:1200–1.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fagerness JA, Maller JB, Neale BM, Reynolds RC, Daly MJ, Seddon JM. Variation near complement factor I is associated with risk of advanced AMD. Eur J Hum Genet. 2009;17:100–4.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yates JRW, Sepp T, Matharu BK, Khan JC, Thurlby DA, Shahid H, et al. Complement C3 variant and the risk of age-related macular degeneration. New Engl J Med. 2007;357:553–61.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hughes AE, Orr N, Esfandiary H, Diaz-Torres M, Goodship T, Chakravarthy U. A common CFH haplotype, with deletion of CFHR1 and CFHR3, is associated with lower risk of age-related macular degeneration. Nat Genet. 2006;38:1173–7.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Thornton J, Edwards R, Mitchell P, Harrison RA, Buchan I, Kelly SP. Smoking and age-related macular degeneration: a review of association. Eye. 2005;19:935–44.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014;346:1258096.

    Article 
    PubMed 

    Google Scholar 

  • Kantor A, McClements ME, Peddle CF, Fry LE, Salman A, Cehajic-Kapetanovic J, et al. CRISPR genome engineering for retinal diseases. Prog Mol Biol Transl Sci. 2021;182:29–79.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hidalgo-Cantabrana C, Barrangou R. Characterization and applications of Type I CRISPR-Cas systems. Biochem Soc Trans. 2020;48:15–23.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science. 2012;337:816–21.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sander JD, Joung JK. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol. 2014;32:347–55.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gallagher DN, Haber JE. Repair of a Site-Specific DNA Cleavage: Old-School Lessons for Cas9-Mediated Gene Editing. ACS Chem Biol. 2018;13:397–405.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Geerlings MJ, de Jong EK, den Hollander AI. The complement system in age-related macular degeneration: A review of rare genetic variants and implications for personalized treatment. Mol Immunol. 2017;84:65–76.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Salman A, McClements ME, MacLaren RE. CRISPR Manipulation of Age-Related Macular Degeneration Haplotypes in the Complement System: Potential Future Therapeutic Applications/Avenues. Int J Mol Sci. 2024;25:1697.

  • Zhang Y, Huang Q, Tang M, Zhang J, Fan W. Complement Factor H Expressed by Retinal Pigment Epithelium Cells Can Suppress Neovascularization of Human Umbilical Vein Endothelial Cells: An in vitro Study. PLoS One. 2015;10:e0129945.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rayner E, Durin MA, Thomas R, Moralli D, O’Cathail SM, Tomlinson I, et al. CRISPR-Cas9 Causes Chromosomal Instability and Rearrangements in Cancer Cell Lines, Detectable by Cytogenetic Methods. CRISPR J. 2019;2:406–16.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brinkman EK, Chen T, Amendola M, van Steensel B. Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res. 2014;42:e168.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Clement K, Rees H, Canver MC, Gehrke JM, Farouni R, Hsu JY, et al. CRISPResso2 provides accurate and rapid genome editing sequence analysis. Nat Biotechnol. 2019;37:224–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fasler-Kan E, Aliu N, Wunderlich K, Ketterer S, Ruggiero S, Berger S, et al. The Retinal Pigment Epithelial Cell Line (ARPE-19) Displays Mosaic Structural Chromosomal Aberrations. Methods Mol Biol. 2018;1745:305–14.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Boettcher M, McManus MT. Choosing the Right Tool for the Job: RNAi, TALEN, or CRISPR. Mol Cell. 2015;58:575–85.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jiang F, Doudna JA. CRISPR-Cas9 Structures and Mechanisms. Annu Rev Biophys. 2017;46:505–29.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, et al. RNA-guided human genome engineering via Cas9. Science. 2013;339:823–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang Y, Wang Y, Zeng B, Liu Z, Xu X, Meng Q, et al. Functional characterization of Pol III U6 promoters for gene knockdown and knockout in Plutella xylostella. Insect Biochem Mol Biol. 2017;89:71–8.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Belhaj K, Chaparro-Garcia A, Kamoun S, Nekrasov V. Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods. 2013;9:39.

  • Wu J, Tang B, Tang Y. Allele-specific genome targeting in the development of precision medicine. Theranostics. 2020;10:3118–37.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol. 2013;31:233–9.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339:819–23.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pattanayak V, Lin S, Guilinger JP, Ma E, Doudna JA, Liu DR. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol. 2013;31:839–43.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu X, Scott DA, Kriz AJ, Chiu AC, Hsu PD, Dadon DB, et al. Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat Biotechnol. 2014;32:670–6.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • O’Geen H, Henry IM, Bhakta MS, Meckler JF, Segal DJ. A genome-wide analysis of Cas9 binding specificity using ChIP-seq and targeted sequence capture. Nucleic Acids Res. 2015;43:3389–404.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol. 2013;31:827–32.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Doench JG, Fusi N, Sullender M, Hegde M, Vaimberg EW, Donovan KF, et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol. 2016;34:184–91.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rabinowitz R, Offen D. Single-Base Resolution: Increasing the Specificity of the CRISPR-Cas System in Gene Editing. Mol Ther. 2021;29:937–48.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA. 1977;74:5463–7.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 




  • Source link

    Add a comment

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Keep Up to Date with the Most Important News

    By pressing the Subscribe button, you confirm that you have read and are agreeing to our Privacy Policy and Terms of Use