Autophagy-related biomarkers identified in sepsis-induced ARDS through bioinformatics analysis

Autophagy-related biomarkers identified in sepsis-induced ARDS through bioinformatics analysis Autophagy-related biomarkers identified in sepsis-induced ARDS through bioinformatics analysis


  • Singer, M. et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 315 (8), 801–810 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Mikkelsen, M. E. et al. The epidemiology of acute respiratory distress syndrome in patients presenting to the emergency department with severe sepsis. Shock 40 (5), 375–381 (2013).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Iriyama, H. et al. Risk modifiers of acute respiratory distress syndrome in patients with non-pulmonary sepsis: a retrospective analysis of the FORECAST study. J. Intens. Care. 8, 7 (2020).

    Article 
    MATH 

    Google Scholar 

  • Li, S. et al. Prevalence, potential risk factors and mortality rates of acute respiratory distress syndrome in Chinese patients with sepsis. J. Int. Med. Res. 48 (2), 300060519895659 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Nam, H. et al. Nonpulmonary risk factors of acute respiratory distress syndrome in patients with septic bacteraemia. Korean J. Intern. Med. 34 (1), 116–124 (2019).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Seethala, R. R. et al. Early risk factors and the role of fluid administration in developing acute respiratory distress syndrome in septic patients. Ann. Intens. Care. 7 (1), 11 (2017).

    Article 

    Google Scholar 

  • Shi, Y., Wang, L., Yu, S., Ma, X. & Li, X. Risk factors for acute respiratory distress syndrome in sepsis patients: a retrospective study from a tertiary hospital in China. BMC Pulm. Med. 22 (1), 238 (2022).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Xu, C., Zheng, L., Jiang, Y. & Jin, L. A prediction model for predicting the risk of acute respiratory distress syndrome in sepsis patients: a retrospective cohort study. BMC Pulm. Med. 23 (1), 78 (2023).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Matthay, M. A. et al. Acute respiratory distress syndrome. Nat. Rev. Dis. Primers 5 (1), 18 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lelubre, C. & Vincent, J. L. Mechanisms and treatment of organ failure in sepsis. Nat. Rev. Nephrol. 14 (7), 417–427 (2018).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Liu, C., Xiao, K. & Xie, L. Progress in preclinical studies of macrophage autophagy in the regulation of ALI/ARDS. Front. Immunol. 13, 922702 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sun, M., Yang, Q., Hu, C., Zhang, H. & Xing, L. Identification and validation of autophagy-related genes in sepsis-induced acute respiratory distress syndrome and immune infiltration. J. Inflamm. Res. 15, 2199–2212 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Zhu, D. et al. The downregulation of miR-129-5p relieves the inflammatory response in acute respiratory distress syndrome by regulating PPARgamma-mediated autophagy. Ann. Transl. Med. 10 (6), 345 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dong, J. et al. Acute lung injury: a view from the perspective of necroptosis. Inflamm. Res. 73 (6), 997–1018 (2024).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Lei, M. et al. Different intensity of autophagy regulate interleukin-33 to control the uncontrolled inflammation of acute lung injury. Inflamm. Res. 68 (8), 665–675 (2019).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Mizushima, N. Autophagy: process and function. Genes Dev. 21 (22), 2861–2873 (2007).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Levine, B., Mizushima, N. & Virgin, H. W. Autophagy in immunity and inflammation. Nature 469 (7330), 323–335 (2011).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Li, Z. Y. et al. Autophagy as a double-edged sword in pulmonary epithelial injury: a review and perspective. Am. J. Physiol. Lung Cell. Mol. Physiol. 313 (2), L207–L217 (2017).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar 

  • Takei, K. & Haucke, V. Clathrin-mediated endocytosis: membrane factors pull the trigger. Trends Cell. Biol. 11 (9), 385–391 (2001).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Birgisdottir, A. B. & Johansen, T. Autophagy and endocytosis—Interconnections and interdependencies. J. Cell. Sci. 133 (10), 1 (2020).

    Article 

    Google Scholar 

  • Zarrin, A. A., Bao, K., Lupardus, P. & Vucic, D. Kinase Inhibition in autoimmunity and inflammation. Nat. Rev. Drug Discov. 20 (1), 39–63 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Christie, J. D. et al. A randomized dose-escalation study of the safety and anti-inflammatory activity of the p38 mitogen-activated protein kinase inhibitor dilmapimod in severe trauma subjects at risk for acute respiratory distress syndrome. Crit. Care Med. 43 (9), 1859–1869 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Spinelli, F. R., Conti, F. & Gadina, M. HiJAKing SARS-CoV-2? The potential role of JAK inhibitors in the management of COVID-19. Sci. Immunol. 5 (47), 1 (2020).

    Article 

    Google Scholar 

  • Li, L. F., Liao, S. K., Huang, C. C., Hung, M. J. & Quinn, D. A. Serine/threonine kinase-protein kinase B and extracellular signal-regulated kinase regulate ventilator-induced pulmonary fibrosis after bleomycin-induced acute lung injury: a prospective, controlled animal experiment. Crit. Care. 12 (4), R103 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Abedi, F., Hayes, A. W., Reiter, R. & Karimi, G. Acute lung injury: the therapeutic role of Rho kinase inhibitors. Pharmacol. Res. 155, 104736 (2020).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Othman, A., Sekheri, M. & Filep, J. G. Roles of neutrophil granule proteins in orchestrating inflammation and immunity. FEBS J. 289 (14), 3932–3953 (2022).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Zhu, L. W. et al. Ficolin-A induces macrophage polarization to a novel pro-inflammatory phenotype distinct from classical M1. Cell. Commun. Signal. 22 (1), 271 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Gajek, G. et al. Association of low ficolin-2 concentration in cord serum with respiratory distress syndrome in preterm newborns. Front. Immunol. 14, 1107063 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Sauler, M., Bazan, I. S. & Lee, P. J. Cell death in the lung: the apoptosis-necroptosis axis. Annu. Rev. Physiol. 81, 375–402 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yang, Z., Nicholson, S. E., Cancio, T. S., Cancio, L. C. & Li, Y. Complement as a vital nexus of the Pathobiological connectome for acute respiratory distress syndrome: an emerging therapeutic target. Front. Immunol. 14, 1100461 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ye, C., Brand, D. & Zheng, S. G. Targeting IL-2: an unexpected effect in treating immunological diseases. Signal. Transduct. Target. Ther. 3, 2 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Morrell, E. D. et al. Peripheral and alveolar cell transcriptional programs are distinct in acute respiratory distress syndrome. Am. J. Respir Crit. Care Med. 197 (4), 528–532 (2018).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Yan, L., Chen, Y., Han, Y. & Tong, C. Role of CD8(+) T cell exhaustion in the progression and prognosis of acute respiratory distress syndrome induced by sepsis: a prospective observational study. BMC Emerg. Med. 22 (1), 182 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chevalier, N. et al. CXCR5 expressing human central memory CD4 T cells and their relevance for humoral immune responses. J. Immunol. 186 (10), 5556–5568 (2011).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Zhang, M. N., Yuan, Y. L. & Ao, S. H. Advances in the study of myeloid-derived suppressor cells in infectious lung diseases. Front. Immunol. 14, 1125737 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Park, K. J. et al. Deficiency and dysfunctional roles of natural killer T cells in patients with ARDS. Front. Immunol. 15, 1433028 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mitsuyama, Y. et al. T cell dysfunction in elderly ARDS patients based on MiRNA and mRNA integration analysis. Front. Immunol. 15, 1368446 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rotoli, B. M. et al. Downregulation of SLC7A7 triggers an inflammatory phenotype in human macrophages and airway epithelial cells. Front. Immunol. 9, 508 (2018).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Lee, H. et al. Role of antiproliferative B cell translocation gene-1 as an apoptotic sensitizer in activation-induced cell death of brain microglia. J. Immunol. 171 (11), 5802–5811 (2003).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Qu, M. et al. The role of ferroptosis in acute respiratory distress syndrome. Front. Med. 8, 651552 (2021).

    Article 
    MATH 

    Google Scholar 

  • Bonifacino, J. S. & Rojas, R. Retrograde transport from endosomes to the trans-Golgi network. Nat. Rev. Mol. Cell. Biol. 7 (8), 568–579 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pfeffer, S. R. Multiple routes of protein transport from endosomes to the trans golgi network. FEBS Lett. 583 (23), 3811–3816 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Banik, S. M. et al. Lysosome-targeting chimaeras for degradation of extracellular proteins. Nature 584 (7820), 291–297 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Rao, Y. & Haucke, V. Membrane shaping by the Bin/amphiphysin/Rvs (BAR) domain protein superfamily. Cell. Mol. Life Sci. 68 (24), 3983–3993 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Lian, X., Yan, C., Yang, L., Xu, Y. & Du, H. Lysosomal acid lipase deficiency causes respiratory inflammation and destruction in the lung. Am. J. Physiol. Lung Cell. Mol. Physiol. 286 (4), L801–807 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Terpstra, M. L., Aman, J., van Nieuw Amerongen, G. P. & Groeneveld, A. B. Plasma biomarkers for acute respiratory distress syndrome: a systematic review and meta-analysis. Crit. Care Med. 42 (3), 691–700 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • van der Zee, P., Rietdijk, W., Somhorst, P., Endeman, H. & Gommers, D. A systematic review of biomarkers multivariately associated with acute respiratory distress syndrome development and mortality. Crit. Care. 24 (1), 243 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 




  • Source link

    Add a comment

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Keep Up to Date with the Most Important News

    By pressing the Subscribe button, you confirm that you have read and are agreeing to our Privacy Policy and Terms of Use