A positron emission tomography tracer for the imaging of oxidative stress in the central nervous system

A positron emission tomography tracer for the imaging of oxidative stress in the central nervous system A positron emission tomography tracer for the imaging of oxidative stress in the central nervous system


  • Lennicke, C. & Cochemé, H. M. Redox metabolism: ROS as specific molecular regulators of cell signaling and function. Mol. Cell 81, 3691–3707 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Butterfield, D. A. & Halliwell, B. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat. Rev. Neurosci. 20, 148–160 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schumacher, B., Pothof, J., Vijg, J. & Hoeijmakers, J. H. J. The central role of DNA damage in the ageing process. Nature 592, 695–703 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Burton, G. W. & Ingold, K. U. Autoxidation of biological molecules. 1. Antioxidant activity of vitamin E and related chain-breaking phenolic antioxidants in vitro. J. Am. Chem. Soc. 103, 6472–6477 (1981).

    Article 
    CAS 

    Google Scholar 

  • Yamamoto, Y. et al. Free radical chain oxidation and hemolysis of erythrocytes by molecular oxygen and their inhibition by vitamin E. J. Nutr. Sci. Vitaminol. 32, 475–479 (1986).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rodrigo, J., Fernández, A. P., Serrano, J., Peinado, M. A. & Martínez, A. The role of free radicals in cerebral hypoxia and ischemia. Free Radic. Biol. Med. 39, 26–50 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yoshida, S. et al. Influence of transient ischemia on lipid-soluble antioxidants, free fatty acids and energy metabolites in rat brain. Brain Res. 245, 307–316 (1982).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Butterfield, D. A. & Boyd-Kimball, D. Oxidative stress, amyloid-β peptide, and altered key molecular pathways in the pathogenesis and progression of Alzheimer’s disease. J. Alzheimer’s Dis. 62, 1345–1367 (2018).

    Article 
    CAS 

    Google Scholar 

  • Hensley, K. et al. Brain regional correspondence between Alzheimer’s disease histopathology and biomarkers of protein oxidation. J. Neurochem. 65, 2146–2156 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Martins, R. N., Harper, C. G., Stokes, G. B. & Masters, C. L. Increased cerebral glucose-6-phosphate dehydrogenase activity in Alzheimer’s disease may reflect oxidative stress. J. Neurochem. 46, 1042–1045 (1986).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Arnold, S. E. et al. Brain insulin resistance in type 2 diabetes and Alzheimer disease: concepts and conundrums. Nat. Rev. Neurol. 14, 168–181 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Weise, C. M. et al. Left lateralized cerebral glucose metabolism declines in amyloid-β positive persons with mild cognitive impairment. NeuroImage Clin. 20, 286–296 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Smith, M. A., Harris, P. L. R., Sayre, L. M., Beckman, J. S. & Perry, G. Widespread peroxynitrite-mediated damage in Alzheimer’s disease. J. Neurosci. 17, 2653–2657 (1997).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sultana, R. et al. Proteomic identification of nitrated brain proteins in amnestic mild cognitive impairment: a regional study. J. Cell. Mol. Med. 11, 839–851 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Reed, T. T., Pierce, W. M. Jr, Turner, D. M., Markesbery, W. R. & Butterfield, D. A. Proteomic identification of nitrated brain proteins in early Alzheimer’s disease inferior parietal lobule. J. Cell. Mol. Med. 13, 2019–2029 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Mattson, M. P. Pathways towards and away from Alzheimer’s disease. Nature 430, 631–639 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Petersen, R. C. et al. Vitamin E and donepezil for the treatment of mild cognitive impairment. N. Engl. J. Med. 352, 2379–2388 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Murphy, M. P. et al. Guidelines for measuring reactive oxygen species and oxidative damage in cells and in vivo. Nat. Metab. 4, 651–662 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Swartz, H. M. et al. Clinical EPR unique opportunities and some challenges. Acad. Radiol. 21, 197–206 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Keshari, K. R. et al. Hyperpolarized 13C dehydroascorbate as an endogenous redox sensor for in vivo metabolic imaging. Proc. Natl Acad. Sci. USA 108, 18606–18611 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Carroll, V. et al. A boronate-caged [18F]FLT probe for hydrogen peroxide detection using positron emission tomography. J. Am. Chem. Soc. 136, 14742–14745 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Carroll, V. N. et al. [11C]Ascorbic and [11C]dehydroascorbic acid, an endogenous redox pair for sensing reactive oxygen species using positron emission tomography. Chem. Commun. 52, 4888–4890 (2016).

    Article 
    CAS 

    Google Scholar 

  • Pisaneschi, F., Gammon, S. T., Paolillo, V., Qureshy, S. A. & Piwnica-Worms, D. Imaging of innate immunity activation in vivo with a redox-tuned PET reporter. Nat. Biotechnol. 40, 965–973 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hou, C. et al. Development of a positron emission tomography radiotracer for imaging elevated levels of superoxide in neuroinflammation. ACS Chem. Neurosci. 9, 578–586 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wilson, A. A. et al. Evaluation of a novel radiotracer for positron emission tomography imaging of reactive oxygen species in the central nervous system. Nucl. Med. Biol. 53, 14–20 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Okazawa, H. et al. Cerebral oxidative stress in early Alzheimer’s disease evaluated by 64Cu-ATSM PET/MRI: a preliminary study. Antioxidants 11, 1022 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Watanabe, K., Tanaka, M., Yuki, S., Hirai, M. & Yamamoto, Y. How is edaravone effective against acute ischemic stroke and amyotrophic lateral sclerosis? J. Clin. Biochem. Nutr. 62, 20–38 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fujisawa, A. & Yamamoto, Y. Edaravone, a potent free radical scavenger, reacts with peroxynitrite to produce predominantly 4-NO-edaravone. Redox Rep. 21, 98–103 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Radi, R. Oxygen radicals, nitric oxide, and peroxynitrite: redox pathways in molecular medicine. Proc. Natl Acad. Sci. USA 115, 5839–5848 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kawai, H. et al. Effects of a novel free radical scavenger, MCl-186, on ischemic brain damage in the rat distal middle cerebral artery occlusion model. J. Pharmacol. Exp. Ther. 281, 921–927 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kobayashi, S., Fukuma, S., Ikenoue, T., Fukuhara, S. & Kobayashi, S. Effect of edaravone on neurological symptoms in real-world patients with acute ischemic stroke. Stroke 50, 1805–1811 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Witzel, S. et al. Safety and effectiveness of long-term intravenous administration of edaravone for treatment of patients with amyotrophic lateral sclerosis. JAMA Neurol. 79, 121–130 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Yoshiyama, Y. et al. Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 53, 337–351 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nebel, N. et al. [18F]Fluorophenylazocarboxylates: design and synthesis of potential radioligands for dopamine D3 and μ-opioid receptor. ACS Omega 2, 8649–8659 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Roy, A. & Sil, P. C. Tertiary butyl hydroperoxide induced oxidative damage in mice erythrocytes: protection by taurine. Pathophysiology 19, 137–148 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Roy, A. & Sil, P. C. Taurine protects murine hepatocytes against oxidative stress-induced apoptosis by tert-butyl hydroperoxide via PI3K/AKT and mitochondrial-dependent pathways. Food Chem. 131, 1086–1096 (2012).

    Article 
    CAS 

    Google Scholar 

  • Jong, C. J., Azuma, J. & Schaffer, S. Mechanism underlying the antioxidant activity of taurine: prevention of mitochondrial oxidant production. Amino Acids 42, 2223–2232 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chu, W. et al. Development of a PET radiotracer for non-invasive imaging of the reactive oxygen species, superoxide, in vivo. Org. Biomol. Chem. 12, 4421–4431 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rauhala, P., Andoh, T., Yeh, K. & Chiueh, C. C. Contradictory effects of sodium nitroprusside and S-nitroso-N-acetylpenicillamine on oxidative stress in brain dopamine neurons in vivo. Ann. N. Y. Acad. Sci. 962, 60–72 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sun, Y.-Y. et al. A murine photothrombotic stroke model with an increased fibrin content and improved responses to tPA-lytic treatment. Blood Adv. 4, 1222–1231 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sun, Y.-Y. et al. Prophylactic edaravone prevents transient hypoxic-ischemic brain injury: implications for perioperative neuroprotection. Stroke 46, 1947–1955 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kessler, R. M. et al. Measurement of blood–brain barrier permeability with positron emission tomography and [68Ga]EDTA. J. Cereb. Blood Flow Metab. 4, 323–328 (1984).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, Y. & Kundu, B. K. An improved optimization algorithm of the three-compartment model with spillover and partial volume corrections for dynamic FDG PET images of small animal hearts in vivo. Phys. Med. Biol. 63, 055003 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Logan, J. et al. Graphical analysis of reversible radioligand binding from time–activity measurements applied to [N-11C-methyl]-cocaine PET studies in human subjects. J. Cereb. Blood Flow Metab. 10, 740–747 (1990).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Quigg, M. & Kundu, B. Dynamic FDG-PET demonstration of functional brain abnormalities. Ann. Clin. Transl. Neurol. 9, 1487–1497 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Massey, J. C. et al. Model corrected blood input function to compute cerebral FDG uptake rates from dynamic total-body PET images of rats in vivo. Front. Med. 8, 618645 (2021).

    Article 

    Google Scholar 

  • Dumont, M. et al. Behavioral deficit, oxidative stress, and mitochondrial dysfunction precede tau pathology in P301S transgenic mice. FASEB J. 25, 4063–4072 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Blennow, K. & Zetterberg, H. Biomarkers for Alzheimer’s disease: current status and prospects for the future. J. Intern. Med. 284, 643–663 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Villa, C., Lavitrano, M., Salvatore, E. & Combi, R. Molecular and imaging biomarkers in Alzheimer’s disease: a focus on recent insights. J. Pers. Med. 10, 61 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Young, P. N. E. et al. Imaging biomarkers in neurodegeneration: current and future practices. Alzheimer’s Res. Ther. 12, 49 (2020).

    Article 

    Google Scholar 

  • Haque, R. et al. A protein panel in cerebrospinal fluid for diagnostic and predictive assessment of Alzheimer’s disease. Sci. Transl. Med. 15, eadg4122 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ward, J., Ly, M. & Raji, C. A. Brain PET imaging frontotemporal dementia. PET Clin. 18, 123–133 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wilson, D. M. et al. Hallmarks of neurodegenerative diseases. Cell 186, 693–714 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Branca, C. et al. Genetic reduction of Nrf2 exacerbates cognitive deficits in a mouse model of Alzheimer’s disease. Hum. Mol. Genet. 26, 4823–4835 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Scott, P. J. H. et al. Studies into radiolytic decomposition of fluorine-18 labeled radiopharmaceuticals for positron emission tomography. Appl. Radiat. Isot. 67, 88–94 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Neumann, K. D. et al. Dose formulation, biodistribution and PET imaging studies of a first-in-class fluorine-18 organophosphorus cholinesterase inhibitor tracer in rat. Curr. Chem. Biol. 14, 289–303 (2020).

    Article 
    CAS 

    Google Scholar 

  • Murakami, K. et al. Mitochondrial susceptibility to oxidative stress exacerbates cerebral infarction that follows permanent focal cerebral ischemia in mutant mice with manganese superoxide dismutase deficiency. J. Neurosci. 18, 205–213 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sun, Y.-Y. et al. Synergy of combined tPA-edaravone therapy in experimental thrombotic stroke. PLoS ONE 9, e98807 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Furuya, D. et al. Edaravone therapy initiated immediately after cardioembolic stroke and its effects on functional recovery. Nosotchu 28, 291–296 (2006).

    Article 

    Google Scholar 

  • Patlak, C. S. & Blasberg, R. G. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations. J. Cereb. Blood Flow Metab. 5, 584–590 (1985).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gallivanone, F., Rosa, P. A. D. & Castiglioni, I. Statistical voxel-based methods and [18F]FDG PET brain imaging: frontiers for the diagnosis of AD. Curr. Alzheimer Res. 13, 682–694 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hsieh, C.-J. et al. [18F]ROStrace detects oxidative stress in vivo and predicts progression of Alzheimer’s disease pathology in APP/PS1 mice. EJNMMI Res. 12, 43–55 (2022).

  • Dickinson, B. C. & Chang, C. J. A targetable fluorescent probe for imaging hydrogen peroxide in the mitochondria of living cells. J. Am. Chem. Soc. 130, 11561–11561 (2008).

    Article 
    CAS 

    Google Scholar 

  • Luanpitpong, S. et al. Mitochondrial superoxide mediates doxorubicin-induced keratinocyte apoptosis through oxidative modification of ERK and Bcl-2 ubiquitination. Biochem. Pharmacol. 83, 1643–1654 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hosoi, R. et al. A simple ex vivo semiquantitative fluorescent imaging utilizing planar laser scanner: detection of reactive oxygen species generation in mouse brain and kidney. Mol. Imaging 18, 1536012118820421 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang, Q., Massey, J. C., Mińczuk, K., Li, J. & Kundu, B. K. Non-invasive determination of blood input function to compute rate of myocardial glucose uptake from dynamic FDG PET images of rat heart in vivo: comparative study between the inferior vena cava and the left ventricular blood pool with spill over and partial volume corrections. Phys. Med. Biol. 64, 165010–165018 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhong, M. & Kundu, B. K. Optimization of a model corrected blood input function from dynamic FDG-PET images of small animal heart in vivo. IEEE Trans. Nucl. Sci. 60, 3417–3422 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Neumann, K. D. et al. Microglial activation persists beyond clinical recovery following sport concussion in collegiate athletes. Front. Neurol. 14, 1127708 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 




  • Source link

    Add a comment

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Keep Up to Date with the Most Important News

    By pressing the Subscribe button, you confirm that you have read and are agreeing to our Privacy Policy and Terms of Use