Technical document for. Chromobacterium subtsugae strain PRAA4-1T, also referred to as a BRAD – decision_PC-016329_27-Sep-11.pdf. (2016). https://www3.epa.gov/pesticides/chem_search/reg_actions/registration/decision_PC-016329_27-Sep-11.pdf
Blackburn, M. B. et al. Chromobacterium Sphagni sp. nov., an insecticidal bacterium isolated from Sphagnum bogs. Int. J. Syst. Evol. Microbiol. 67, 3417–3422 (2017).
Google Scholar
Martin, P. A. W., Gundersen-Rindal, D., Blackburn, M. & Buyer, J. Chromobacterium subtsugae sp. nov., a betaproteobacterium toxic to Colorado potato beetle and other insect pests. Int. J. Syst. Evol. Microbiol. 57, 993–999 (2007).
Google Scholar
Martin, P. A. W., Hirose, E. & Aldrich, J. R. Toxicity of Chromobacterium subtsugae to Southern green stink bug (Heteroptera: Pentatomidae) and corn rootworm (Coleoptera: Chrysomelidae). J. Econ. Entomol. 100, 680–684 (2007).
Google Scholar
Martin, P. A. W., Shropshire, A. D. S., Gundersen-Rindal, D. E. & Blackburn, M. B. Chromobacterium subtsugae sp. nov. and Use for Control of Insect Pests. U.S. Patent No. US8691219B2 (U.S. Patent and Trademark Office, 2014).
Farrar, R. R. Jr., Gundersen-Rindal, D., Kuhar, D. & Blackburn, M. B. Insecticidal activity of a recently described bacterium, Chromobacterium sphagni. J. Entomol. Sci. 53, 333–338 (2018).
Farrar, R. R., Gundersen-Rindal, D. E., Kuhar, D. & Blackburn, M. B. Insecticidal activity of Chromobacterium vaccinii. J. Entomol. Sci. 53, 339–346 (2018).
Asolkar, R., Huang, H., Koivunen, M. & Marrone, P. Chromobacterium Bioactive Compositions and Metabolites. U.S. Patent No. US8715754B2 (U.S. Patent and Trademark Office, 2014).
Blackburn, M. B., Sparks, M. E. & Gundersen-Rindal, D. E. The genome of the insecticidal Chromobacterium subtsugae PRAA4-1 and its comparison with that of Chromobacterium violaceum ATCC 12472. Genomics Data. 10, 1–3 (2016).
Google Scholar
Cordova-Kreylos, A. L., Wilk, D. & Marrone, P. G. Chromobacterium subtsugae Genome. U.S. Patent No. US10597677B2 (U.S. Patent and Trademark Office, 2020).
Bravo, A., Gill, S. S. & Soberón, M. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon Off J. Int. Soc. Toxinology. 49, 423–435 (2007).
Google Scholar
Short, S. M., van Tol, S., MacLeod, H. J. & Dimopoulos, G. Hydrogen cyanide produced by the soil bacterium Chromobacterium sp. Panama contributes to mortality in Anopheles gambiae mosquito larvae. Sci. Rep. 8, 8358 (2018).
Google Scholar
Caragata, E. P., Otero, L. M., Carlson, J. S., Borhani Dizaji, N. & Dimopoulos, G. A nonlive preparation of Chromobacterium sp. Panama (Csp_P) is a highly effective larval mosquito biopesticide. Appl. Environ. Microbiol. 86, e00240–20 (2020).
Google Scholar
Leonard, D. E. U.S. Department of Agriculture, Forest Service, Science and Education Agency, Animal and Plant Health Inspection Service, Washington, D.C.,. Bioecology of the gypsy moth. in Technical Bulletin – U.S. Dept. of Agriculture (USA) 9–29 (1981).
Sparks, M. E., Blackburn, M. B., Kuhar, D. & Gundersen-Rindal, D. E. Transcriptome of the Lymantria dispar (gypsy moth) larval midgut in response to infection by Bacillus thuringiensis. PLoS One. 8, e61190 (2013).
Google Scholar
Bell, R. A., Owens, C. D., Shapiro, M. & Tardif, J. R. Development of mass rearing technology. in C.C. Doane and M.L. McManus (eds.), The gypsy moth: Research toward integrated pest management. Technical Bulletin 1584 599–633 U.S. Department of Agriculture, Forest Service, Washington, DC (1981).
Martin, P. A. W., Blackburn, M. & Shropshire, A. D. Two new bacterial pathogens of Colorado potato beetle (Coleoptera: Chrysomelidae). J. Econ. Entomol. 97, 774–780 (2004).
Google Scholar
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
Google Scholar
Haas, B. J. et al. De Novo transcript sequence reconstruction from RNA-Seq: reference generation and analysis with trinity. Nat. Protoc. 8, 1494–1512 (2013).
Sparks, M. E. et al. Sequencing, assembly and annotation of the whole-insect genome of Lymantria dispar dispar, the European gypsy moth. G3 11, jkab150 (2021).
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
Google Scholar
Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods. 14, 417–419 (2017).
Google Scholar
Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 12, 323 (2011).
Google Scholar
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods. 9, 357–359 (2012).
Google Scholar
Li, B., Ruotti, V., Stewart, R. M., Thomson, J. A. & Dewey, C. N. RNA-Seq gene expression estimation with read mapping uncertainty. Bioinforma Oxf. Engl. 26, 493–500 (2010).
Google Scholar
Gao, C. et al. ggVennDiagram: intuitive Venn diagram software extended. Imeta 3, e177 (2024).
Google Scholar
Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods. 12, 59–60 (2015).
Google Scholar
Rice, P., Longden, I. & Bleasby, A. EMBOSS: the European molecular biology open software suite. Trends Genet. TIG. 16, 276–277 (2000).
Google Scholar
Mitchell, A. et al. The InterPro protein families database: the classification resource after 15 years. Nucleic Acids Res. 43, D213–221 (2015).
Google Scholar
Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011).
Google Scholar
Gene Ontology Consortium. The Gene Ontology knowledgebase in 2023. Genetics 224, iyad031 (2023).
Google Scholar
Blin, K. et al. antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res. 51, W46–W50 (2023).
Google Scholar
Blackburn, M. B., Sparks, M. E., Mishra, R. & Bonning, B. C. Genomic sequencing of fourteen Bacillus thuringiensis isolates: insights into geographic variation and phylogenetic implications. BMC Res. Notes. 16, 134 (2023).
Google Scholar
Buonocore, F. et al. Attacins: a promising class of insect antimicrobial peptides. Antibiotics 10, 212 (2021).
Google Scholar
Silvestro, L., Weiser, J. N. & Axelsen, P. H. Antibacterial and antimembrane activities of Cecropin A in Escherichia coli. Antimicrob. Agents Chemother. 44, 602–607 (2000).
Google Scholar
Hara, S. & Yamakawa, M. Moricin, a novel type of antibacterial peptide isolated from the silkworm, Bombyx mori. J. Biol. Chem. 270, 29923–29927 (1995).
Google Scholar
Wrońska, A. K., Kaczmarek, A., Boguś, M. I. & Kuna, A. Lipids as a key element of insect defense systems. Front. Genet. 14, 1183659 (2023).
Google Scholar
Wen, L. et al. Expression, regulation and binding affinity of fatty acid-binding protein 2 in Spodoptera litura. J. Integr. Agric. 19, 1492–1500 (2020).
Google Scholar
Lee, M., Yoon, C. S., Yi, J., Cho, J. R. & Kim, H. S. Cellular immune responses and FAD-glucose dehydrogenase activity of Mamestra brassicae (Lepidoptera: Noctuidae) challenged with three species of entomopathogenic fungi. Physiol. Entomol. 30, 287–292 (2005).
Google Scholar
Cerenius, L. & Söderhäll, K. Immune properties of invertebrate phenoloxidases. Dev. Comp. Immunol. 122, 104098 (2021).
Google Scholar
González-Santoyo, I. & Córdoba-Aguilar, A. Phenoloxidase: a key component of the insect immune system. Entomol. Exp. Appl. 142, 1–16 (2012).
Google Scholar
Sparks, M. E. et al. A transcriptome survey spanning life stages and sexes of the harlequin bug, Murgantia histrionica. Insects 8, 55 (2017).
Google Scholar
Sparks, M. E. et al. Brown marmorated stink bug, Halyomorpha halys (Stål), genome: putative underpinnings of polyphagy, insecticide resistance potential and biology of a top worldwide pest. BMC Genom. 21, 227 (2020).
Google Scholar
Sparks, M. E., Nelson, D. R., Haber, A. I., Weber, D. C. & Harrison, R. L. Transcriptome sequencing of the striped cucumber beetle, Acalymma vittatum (F.), reveals numerous sex-specific transcripts and xenobiotic detoxification genes. BioTech 9, 21 (2020).
Google Scholar
Hrithrik, T. H. et al. Insect immune resolution with EpOME/DiHOME and its dysregulation by their analogs leading to pathogen hypersensitivity. BioRxiv Prepr. Serv. Biol. https://doi.org/10.1101/2023.07.07.548078 (2023).
van Munster, M. et al. Altered gene expression in Choristoneura fumiferana and Manduca sexta in response to sublethal intoxication by Bacillus thuringiensis Cry1Ab toxin. Insect Mol. Biol. 16, 25–35 (2007).
Google Scholar
Hrdina, A. & Iatsenko, I. The roles of metals in insect-microbe interactions and immunity. Curr. Opin. Insect Sci. 49, 71–77 (2022).
Google Scholar
Chai, F., Truong-Tran, A. Q., Ho, L. H. & Zalewski, P. D. Regulation of caspase activation and apoptosis by cellular zinc fluxes and zinc deprivation: A review. Immunol. Cell. Biol. 77, 272–278 (1999).
Google Scholar
Harrison, R. L. & Bonning, B. C. Proteases as insecticidal agents. Toxins 2, 935–953 (2010).
Google Scholar
Bertin, B. et al. Gelsolin and dCryAB act downstream of muscle identity genes and contribute to preventing muscle splitting and branching in Drosophila. Sci. Rep. 11, 13197 (2021).
Google Scholar
Sandiford, S. L. et al. Cytoplasmic actin is an extracellular insect immune factor which is secreted upon immune challenge and mediates phagocytosis and direct killing of bacteria, and is a Plasmodium antagonist. PLoS Pathog. 11, e1004631 (2015).
Google Scholar
Batista, B. B., Santos, R. E. R. S., Ricci-Azevedo, R., da Silva Neto, J. F. Production and uptake of distinct endogenous catecholate-type siderophores are required for iron acquisition and virulence in Chromobacterium violaceum. Infect. Immun. 87, e00577-19 (2019).
Caldas, C., Cherqui, A., Pereira, A. & Simões, N. Purification and characterization of an extracellular protease from Xenorhabdus nematophila involved in insect immunosuppression. Appl. Environ. Microbiol. 68, 1297–1304 (2002).
Google Scholar
Clark, M. M. & Broderick, N. A. Whole-genome sequencing of Chromobacterium subtsugae strains exhibiting toxicity to Drosophila melanogaster. Microbiol. Resour. Announc. 13, e0012724 (2024).
Google Scholar