Larval spongy moth transcriptomic response to ingestion of broad-versus narrow-spectrum insecticidal Chromobacterium species

Larval spongy moth transcriptomic response to ingestion of broad-versus narrow-spectrum insecticidal Chromobacterium species Larval spongy moth transcriptomic response to ingestion of broad-versus narrow-spectrum insecticidal Chromobacterium species


  • Technical document for. Chromobacterium subtsugae strain PRAA4-1T, also referred to as a BRAD – decision_PC-016329_27-Sep-11.pdf. (2016). https://www3.epa.gov/pesticides/chem_search/reg_actions/registration/decision_PC-016329_27-Sep-11.pdf

  • Blackburn, M. B. et al. Chromobacterium Sphagni sp. nov., an insecticidal bacterium isolated from Sphagnum bogs. Int. J. Syst. Evol. Microbiol. 67, 3417–3422 (2017).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Martin, P. A. W., Gundersen-Rindal, D., Blackburn, M. & Buyer, J. Chromobacterium subtsugae sp. nov., a betaproteobacterium toxic to Colorado potato beetle and other insect pests. Int. J. Syst. Evol. Microbiol. 57, 993–999 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Martin, P. A. W., Hirose, E. & Aldrich, J. R. Toxicity of Chromobacterium subtsugae to Southern green stink bug (Heteroptera: Pentatomidae) and corn rootworm (Coleoptera: Chrysomelidae). J. Econ. Entomol. 100, 680–684 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Martin, P. A. W., Shropshire, A. D. S., Gundersen-Rindal, D. E. & Blackburn, M. B. Chromobacterium subtsugae sp. nov. and Use for Control of Insect Pests. U.S. Patent No. US8691219B2 (U.S. Patent and Trademark Office, 2014).

    Google Scholar 

  • Farrar, R. R. Jr., Gundersen-Rindal, D., Kuhar, D. & Blackburn, M. B. Insecticidal activity of a recently described bacterium, Chromobacterium sphagni. J. Entomol. Sci. 53, 333–338 (2018).

    Google Scholar 

  • Farrar, R. R., Gundersen-Rindal, D. E., Kuhar, D. & Blackburn, M. B. Insecticidal activity of Chromobacterium vaccinii. J. Entomol. Sci. 53, 339–346 (2018).

    Google Scholar 

  • Asolkar, R., Huang, H., Koivunen, M. & Marrone, P. Chromobacterium Bioactive Compositions and Metabolites. U.S. Patent No. US8715754B2 (U.S. Patent and Trademark Office, 2014).

    Google Scholar 

  • Blackburn, M. B., Sparks, M. E. & Gundersen-Rindal, D. E. The genome of the insecticidal Chromobacterium subtsugae PRAA4-1 and its comparison with that of Chromobacterium violaceum ATCC 12472. Genomics Data. 10, 1–3 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cordova-Kreylos, A. L., Wilk, D. & Marrone, P. G. Chromobacterium subtsugae Genome. U.S. Patent No. US10597677B2 (U.S. Patent and Trademark Office, 2020).

    Google Scholar 

  • Bravo, A., Gill, S. S. & Soberón, M. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon Off J. Int. Soc. Toxinology. 49, 423–435 (2007).

    Article 
    CAS 

    Google Scholar 

  • Short, S. M., van Tol, S., MacLeod, H. J. & Dimopoulos, G. Hydrogen cyanide produced by the soil bacterium Chromobacterium sp. Panama contributes to mortality in Anopheles gambiae mosquito larvae. Sci. Rep. 8, 8358 (2018).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Caragata, E. P., Otero, L. M., Carlson, J. S., Borhani Dizaji, N. & Dimopoulos, G. A nonlive preparation of Chromobacterium sp. Panama (Csp_P) is a highly effective larval mosquito biopesticide. Appl. Environ. Microbiol. 86, e00240–20 (2020).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Leonard, D. E. U.S. Department of Agriculture, Forest Service, Science and Education Agency, Animal and Plant Health Inspection Service, Washington, D.C.,. Bioecology of the gypsy moth. in Technical Bulletin – U.S. Dept. of Agriculture (USA) 9–29 (1981).

  • Sparks, M. E., Blackburn, M. B., Kuhar, D. & Gundersen-Rindal, D. E. Transcriptome of the Lymantria dispar (gypsy moth) larval midgut in response to infection by Bacillus thuringiensis. PLoS One. 8, e61190 (2013).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bell, R. A., Owens, C. D., Shapiro, M. & Tardif, J. R. Development of mass rearing technology. in C.C. Doane and M.L. McManus (eds.), The gypsy moth: Research toward integrated pest management. Technical Bulletin 1584 599–633 U.S. Department of Agriculture, Forest Service, Washington, DC (1981).

  • Martin, P. A. W., Blackburn, M. & Shropshire, A. D. Two new bacterial pathogens of Colorado potato beetle (Coleoptera: Chrysomelidae). J. Econ. Entomol. 97, 774–780 (2004).

    Article 
    PubMed 

    Google Scholar 

  • Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Haas, B. J. et al. De Novo transcript sequence reconstruction from RNA-Seq: reference generation and analysis with trinity. Nat. Protoc. 8, 1494–1512 (2013).

  • Sparks, M. E. et al. Sequencing, assembly and annotation of the whole-insect genome of Lymantria dispar dispar, the European gypsy moth. G3 11, jkab150 (2021).

  • Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods. 14, 417–419 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 12, 323 (2011).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods. 9, 357–359 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Li, B., Ruotti, V., Stewart, R. M., Thomson, J. A. & Dewey, C. N. RNA-Seq gene expression estimation with read mapping uncertainty. Bioinforma Oxf. Engl. 26, 493–500 (2010).

    Article 

    Google Scholar 

  • Gao, C. et al. ggVennDiagram: intuitive Venn diagram software extended. Imeta 3, e177 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods. 12, 59–60 (2015).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Rice, P., Longden, I. & Bleasby, A. EMBOSS: the European molecular biology open software suite. Trends Genet. TIG. 16, 276–277 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mitchell, A. et al. The InterPro protein families database: the classification resource after 15 years. Nucleic Acids Res. 43, D213–221 (2015).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011).

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Gene Ontology Consortium. The Gene Ontology knowledgebase in 2023. Genetics 224, iyad031 (2023).

    Article 

    Google Scholar 

  • Blin, K. et al. antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res. 51, W46–W50 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Blackburn, M. B., Sparks, M. E., Mishra, R. & Bonning, B. C. Genomic sequencing of fourteen Bacillus thuringiensis isolates: insights into geographic variation and phylogenetic implications. BMC Res. Notes. 16, 134 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Buonocore, F. et al. Attacins: a promising class of insect antimicrobial peptides. Antibiotics 10, 212 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Silvestro, L., Weiser, J. N. & Axelsen, P. H. Antibacterial and antimembrane activities of Cecropin A in Escherichia coli. Antimicrob. Agents Chemother. 44, 602–607 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hara, S. & Yamakawa, M. Moricin, a novel type of antibacterial peptide isolated from the silkworm, Bombyx mori. J. Biol. Chem. 270, 29923–29927 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wrońska, A. K., Kaczmarek, A., Boguś, M. I. & Kuna, A. Lipids as a key element of insect defense systems. Front. Genet. 14, 1183659 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wen, L. et al. Expression, regulation and binding affinity of fatty acid-binding protein 2 in Spodoptera litura. J. Integr. Agric. 19, 1492–1500 (2020).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Lee, M., Yoon, C. S., Yi, J., Cho, J. R. & Kim, H. S. Cellular immune responses and FAD-glucose dehydrogenase activity of Mamestra brassicae (Lepidoptera: Noctuidae) challenged with three species of entomopathogenic fungi. Physiol. Entomol. 30, 287–292 (2005).

    Article 
    CAS 

    Google Scholar 

  • Cerenius, L. & Söderhäll, K. Immune properties of invertebrate phenoloxidases. Dev. Comp. Immunol. 122, 104098 (2021).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • González-Santoyo, I. & Córdoba-Aguilar, A. Phenoloxidase: a key component of the insect immune system. Entomol. Exp. Appl. 142, 1–16 (2012).

    Article 

    Google Scholar 

  • Sparks, M. E. et al. A transcriptome survey spanning life stages and sexes of the harlequin bug, Murgantia histrionica. Insects 8, 55 (2017).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Sparks, M. E. et al. Brown marmorated stink bug, Halyomorpha halys (Stål), genome: putative underpinnings of polyphagy, insecticide resistance potential and biology of a top worldwide pest. BMC Genom. 21, 227 (2020).

    Article 

    Google Scholar 

  • Sparks, M. E., Nelson, D. R., Haber, A. I., Weber, D. C. & Harrison, R. L. Transcriptome sequencing of the striped cucumber beetle, Acalymma vittatum (F.), reveals numerous sex-specific transcripts and xenobiotic detoxification genes. BioTech 9, 21 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hrithrik, T. H. et al. Insect immune resolution with EpOME/DiHOME and its dysregulation by their analogs leading to pathogen hypersensitivity. BioRxiv Prepr. Serv. Biol. https://doi.org/10.1101/2023.07.07.548078 (2023).

  • van Munster, M. et al. Altered gene expression in Choristoneura fumiferana and Manduca sexta in response to sublethal intoxication by Bacillus thuringiensis Cry1Ab toxin. Insect Mol. Biol. 16, 25–35 (2007).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Hrdina, A. & Iatsenko, I. The roles of metals in insect-microbe interactions and immunity. Curr. Opin. Insect Sci. 49, 71–77 (2022).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Chai, F., Truong-Tran, A. Q., Ho, L. H. & Zalewski, P. D. Regulation of caspase activation and apoptosis by cellular zinc fluxes and zinc deprivation: A review. Immunol. Cell. Biol. 77, 272–278 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Harrison, R. L. & Bonning, B. C. Proteases as insecticidal agents. Toxins 2, 935–953 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bertin, B. et al. Gelsolin and dCryAB act downstream of muscle identity genes and contribute to preventing muscle splitting and branching in Drosophila. Sci. Rep. 11, 13197 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Sandiford, S. L. et al. Cytoplasmic actin is an extracellular insect immune factor which is secreted upon immune challenge and mediates phagocytosis and direct killing of bacteria, and is a Plasmodium antagonist. PLoS Pathog. 11, e1004631 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Batista, B. B., Santos, R. E. R. S., Ricci-Azevedo, R., da Silva Neto, J. F. Production and uptake of distinct endogenous catecholate-type siderophores are required for iron acquisition and virulence in Chromobacterium violaceum. Infect. Immun. 87, e00577-19 (2019).

  • Caldas, C., Cherqui, A., Pereira, A. & Simões, N. Purification and characterization of an extracellular protease from Xenorhabdus nematophila involved in insect immunosuppression. Appl. Environ. Microbiol. 68, 1297–1304 (2002).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Clark, M. M. & Broderick, N. A. Whole-genome sequencing of Chromobacterium subtsugae strains exhibiting toxicity to Drosophila melanogaster. Microbiol. Resour. Announc. 13, e0012724 (2024).

    Article 
    PubMed 

    Google Scholar 




  • Source link

    Add a comment

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Keep Up to Date with the Most Important News

    By pressing the Subscribe button, you confirm that you have read and are agreeing to our Privacy Policy and Terms of Use