A global perspective on research advances and future challenges in Friedreich ataxia

A global perspective on research advances and future challenges in Friedreich ataxia A global perspective on research advances and future challenges in Friedreich ataxia


  • Labuda, M. et al. Unique origin and specific ethnic distribution of the Friedreich ataxia GAA expansion. Neurology 54, 2322–2324 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vankan, P. Prevalence gradients of Friedreich’s ataxia and R1b haplotype in Europe co-localize, suggesting a common Palaeolithic origin in the Franco-Cantabrian ice age refuge. J. Neurochem. 126, 11–20 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Koeppen, A. H. Nikolaus Friedreich and degenerative atrophy of the dorsal columns of the spinal cord. J. Neurochem. 126, 4–10 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Depienne, C. & Mandel, J. L. 30 years of repeat expansion disorders: what have we learned and what are the remaining challenges? Am. J. Hum. Genet. 108, 764–785 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Maio, N. & Rouault, T. A. Mammalian iron sulfur cluster biogenesis and human diseases. IUBMB Life 74, 705 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Boesch, S. & Indelicato, E. Approval of omaveloxolone for Friedreich ataxia. Nat. Rev. Neurol. 20, 313–314 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Campuzano, V. et al. Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271, 1423–1427 (1996).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Savellev, A., Everett, C., Sharpe, T., Webster, Z. & Festenstein, R. DNA triplet repeats mediate heterochromatin-protein-1-sensitive variegated gene silencing. Nature 422, 909–913 (2003).

    Article 

    Google Scholar 

  • Herman, D. et al. Histone deacetylase inhibitors reverse gene silencing in Friedreich’s ataxia. Nat. Chem. Biol. 2, 551–558 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rodden, L. N. et al. Methylated and unmethylated epialleles support variegated epigenetic silencing in Friedreich ataxia. Hum. Mol. Genet. 29, 3818–3829 (2020).

    Article 
    CAS 

    Google Scholar 

  • Campuzano, V. et al. Frataxin is reduced in Friedreich ataxia patients and is associated with mitochondrial membranes. Hum. Mol. Genet. 6, 1771–1780 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Galea, C. A. et al. Compound heterozygous FXN mutations and clinical outcome in Friedreich ataxia. Ann. Neurol. 79, 485–495 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shen, M. M., Rummey, C. & Lynch, D. R. Phenotypic variation of FXN compound heterozygotes in a Friedreich ataxia cohort. Ann. Clin. Transl. Neurol. 11, 1110–1121 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Candayan, A. et al. The first biallelic missense mutation in the FXN gene in a consanguineous Turkish family with Charcot-Marie-Tooth-like phenotype. Neurogenetics 21, 73–78 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cossée, M. et al. Inactivation of the Friedreich ataxia mouse gene leads to early embryonic lethality without iron accumulation. Hum. Mol. Genet. 9, 1219–1226 (2000).

    Article 
    PubMed 

    Google Scholar 

  • Rummey, C. et al. Natural history of Friedreich ataxia: heterogeneity of neurologic progression and consequences for clinical trial design. Neurology 99, E1499–E1510 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Indelicato, E. et al. Onset features and time to diagnosis in Friedreich’s ataxia. Orphanet J. Rare Dis. 15, 198 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Parkinson, M. H., Boesch, S., Nachbauer, W., Mariotti, C. & Giunti, P. Clinical features of Friedreich’s ataxia: classical and atypical phenotypes. J. Neurochem. 126, 103–117 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fahey, M. C. et al. Vestibular, saccadic and fixation abnormalities in genetically confirmed Friedreich ataxia. Brain 131, 1035–1045 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Spicker, S. et al. Fixation instability and oculomotor abnormalities in Friedreich’s ataxia. J. Neurol. 242, 517–521 (1995).

    Article 

    Google Scholar 

  • Patel, M. et al. Body mass index and height in the Friedreich Ataxia Clinical Outcome Measures Study. Neurol. Genet. 7, e638 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Simon, A. L. et al. Scoliosis in patients with Friedreich ataxia: results of a consecutive prospective series. Spine Deform. 7, 812–821 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Helliwell, T. R. et al. The pathology of the lower leg muscles in pure forefoot pes cavus. Acta Neuropathol. 89, 552–559 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tamaroff, J. et al. Friedreich’s ataxia related diabetes: epidemiology and management practices. Diabetes Res. Clin. Pract. 186, 109828 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fichera, M. et al. Comorbidities in Friedreich ataxia: incidence and manifestations from early to advanced disease stages. Neurol. Sci. 43, 6831–6838 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Cnop, M., Mulder, H. & Igoillo-Esteve, M. Diabetes in Friedreich ataxia. J. Neurochem. 126, 94–102 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dürr, A. et al. Clinical and genetic abnormalities in patients with Friedreich’s ataxia. N. Engl. J. Med. 335, 1169–1175 (1996).

    Article 
    PubMed 

    Google Scholar 

  • Reetz, K. et al. Biological and clinical characteristics of the European Friedreich’s Ataxia Consortium for Translational Studies (EFACTS) cohort: a cross-sectional analysis of baseline data. Lancet Neurol. 14, 174–182 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Patel, M. et al. Progression of Friedreich ataxia: quantitative characterization over 5 years. Ann. Clin. Transl. Neurol. 3, 684–694 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Reetz, K. et al. Progression characteristics of the European Friedreich’s Ataxia Consortium for Translational Studies (EFACTS): a 2 year cohort study. Lancet Neurol. 15, 1346–1354 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Rummey, C., Farmer, J. M. & Lynch, D. R. Predictors of loss of ambulation in Friedreich’s ataxia. EClinicalMedicine 18, 100213 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sharma, R. et al. Friedreich ataxia in carriers of unstable borderline GAA triplet-repeat alleles. Ann. Neurol. 56, 898–901 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ragno, M. et al. Broadened Friedreich’s ataxia phenotype after gene cloning: minimal GAA expansion causes late-onset spastic ataxia. Neurology 49, 1617–1620 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Indelicato, E. et al. Predictors of survival in Friedreich’s ataxia: a prospective cohort study. Mov. Disord. 39, 510–518 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Epplen, C. et al. Differential stability of the (GAA)n tract in the Friedreich ataxia (STM7) gene. Hum. Genet. 99, 834–836 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tai, G., Yiu, E. M., Corben, L. A. & Delatycki, M. B. A longitudinal study of the Friedreich ataxia impact scale. J. Neurol. Sci. 352, 53–57 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Brandsma, R. et al. A clinical diagnostic algorithm for early onset cerebellar ataxia. Eur. J. Paediatr. Neurol. 23, 692–706 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Van de Warrenburg, B. P. C. et al. EFNS/ENS consensus on the diagnosis and management of chronic ataxias in adulthood. Eur. J. Neurol. 21, 552–562 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Fleszar, Z. et al. Short-read genome sequencing allows ‘en route’ diagnosis of patients with atypical Friedreich ataxia. J. Neurol. 270, 4112–4117 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Uppili, B. et al. Sequencing through hyperexpanded Friedreich’s ataxia-GAA repeats by nanopore technology: implications in genotype-phenotype correlation. Brain Commun. 5, fcad020 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bidichandani, S. I., Ashizawa, T. & Patel, P. I. The GAA triplet-repeat expansion in Friedreich ataxia interferes with transcription and may be associated with an unusual DNA structure. Am. J. Hum. Genet. 62, 111–121 (1998).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ohshima, K., Montermini, L., Wells, R. D. & Pandolfo, M. Inhibitory effects of expanded GAA·TTC triplet repeats from intron I of the Friedreich ataxia gene on transcription and replication in vivo. J. Biol. Chem. 273, 14588–14595 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sakamoto, N. et al. Sticky DNA: self-association properties of long GAA.TTC repeats in R.R.Y triplex structures from Friedreich’s ataxia. Mol. Cell 3, 465–475 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Soragni, E. et al. Epigenetic therapy for Friedreich ataxia. Ann. Neurol. 76, 489–508 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cavadini, P., Adamec, J., Taroni, F., Gakh, O. & Isaya, G. Two-step processing of human frataxin by mitochondrial processing peptidase. Precursor and intermediate forms are cleaved at different rates. J. Biol. Chem. 275, 41469–41475 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schmucker, S. et al. Mammalian frataxin: an essential function for cellular viability through an interaction with a preformed ISCU/NFS1/ISD11 iron-sulfur assembly complex. PLoS ONE 6, e16199 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pastore, A. & Puccio, H. Frataxin: a protein in search for a function. J. Neurochem. 126, 43–52 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Babcock, M. et al. Regulation of mitochondrial iron accumulation by Yfh1p, a putative homolog of frataxin. Science 276, 1709–1712 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yoon, T. & Cowan, J. A. Iron-sulfur cluster biosynthesis. Characterization of frataxin as an iron donor for assembly of [2Fe-2S] clusters in ISU-type proteins. J. Am. Chem. Soc. 125, 6078–6084 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Adamec, J. et al. Iron-dependent self-assembly of recombinant yeast frataxin: implications for Friedreich ataxia. Am. J. Hum. Genet. 67, 549–562 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rotig, A. et al. Aconitase and mitochondrial iron-sulphur protein deficiency in Friedreich ataxia. Nat. Genet. 17, 215–217 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rouault, T. A. & Tong, W. H. Iron-sulfur cluster biogenesis and human disease. Trends Genet. 24, 398–407 (2008).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fox, N. G. et al. Structure of the human frataxin-bound iron-sulfur cluster assembly complex provides insight into its activation mechanism. Nat. Commun. 10, 2210 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schulz, V. et al. Mechanism and structural dynamics of sulfur transfer during de novo [2Fe-2S] cluster assembly on ISCU2. Nat. Commun. 15, 3269 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gervason, S. et al. Physiologically relevant reconstitution of iron-sulfur cluster biosynthesis uncovers persulfide-processing functions of ferredoxin-2 and frataxin. Nat. Commun. 10, 3566 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Uzarska, M. A. et al. During FeS cluster biogenesis, ferredoxin and frataxin use overlapping binding sites on yeast cysteine desulfurase Nfs1. J. Biol. Chem. 298, 101570 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Steinhilper, R. et al. Two-stage binding of mitochondrial ferredoxin-2 to the core iron-sulfur cluster assembly complex. Nat. Commun. 15, 10559 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Belbellaa, B., Reutenauer, L., Messaddeq, N., Monassier, L. & Puccio, H. High levels of frataxin overexpression lead to mitochondrial and cardiac toxicity in mouse models. Mol. Ther. Methods Clin. Dev. 19, 120–138 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huichalaf, C. et al. In vivo overexpression of frataxin causes toxicity mediated by iron-sulfur cluster deficiency. Mol. Ther. Methods Clin. Dev. 24, 367–378 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ast, T. et al. Hypoxia rescues frataxin loss by restoring iron sulfur cluster biogenesis. Cell 177, 1507–1521.e16 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Puccio, H. et al. Mouse models for Friedreich ataxia exhibit cardiomyopathy, sensory nerve defect and Fe-S enzyme deficiency followed by intramitochondrial iron deposits. Nat. Genet. 27, 181–186 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • González-Cabo, P. & Palau, F. Mitochondrial pathophysiology in Friedreich’s ataxia. J. Neurochem. 126, 53–64 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Lodi, R. et al. Deficit of in vivo mitochondrial ATP production in patients with Friedreich ataxia. Proc. Natl Acad. Sci. USA 96, 11492–11495 (1999).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Indelicato, E. et al. Skeletal muscle proteome analysis underpins multifaceted mitochondrial dysfunction in Friedreich’s ataxia. Front. Neurosci. 17, 1289027 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Indelicato, E. et al. Skeletal muscle transcriptomics dissects the pathogenesis of Friedreich’s ataxia. Hum. Mol. Genet. 32, 2241–2250 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gurgel-Giannetti, J. et al. A novel complex neurological phenotype due to a homozygous mutation in FDX2. Brain 141, 2289–2298 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Crooks, D. R. et al. Tissue specificity of a human mitochondrial disease: differentiation-enhanced mis-splicing of the Fe-S scaffold gene ISCU renders patient cells more sensitive to oxidative stress in ISCU myopathy. J. Biol. Chem. 287, 40119–40130 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Uhlén, M. et al. Tissue-based map of the human proteome. Science 347, 1260419 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Lynch, D. R., Deutsch, E. C., Wilson, R. B. & Tennekoon, G. Unanswered questions in Friedreich ataxia. J. Child. Neurol. 27, 1223–1229 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • De Biase, I. et al. Progressive GAA expansions in dorsal root ganglia of Friedreich’s ataxia patients. Ann. Neurol. 61, 55–60 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Long, A. et al. Somatic instability of the expanded GAA repeats in Friedreich’s ataxia. PLoS One 12, e0189990 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Koeppen, A. H., Becker, A. B., Qian, J., Gelman, B. B. & Mazurkiewicz, J. E. Friedreich ataxia: developmental failure of the dorsal root entry zone. J. Neuropathol. Exp. Neurol. 76, 969–977 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Koeppen, A. H. & Mazurkiewicz, J. E. Friedreich ataxia: neuropathology revised. J. Neuropathol. Exp. Neurol. 72, 78–90 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Koeppen, A. H., Ramirez, R. L., Becker, A. B. & Mazurkiewicz, J. E. Dorsal root ganglia in Friedreich ataxia: satellite cell proliferation and inflammation. Acta Neuropathol. Commun. 4, 46 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Harding, I. H. et al. Brain structure and degeneration staging in Friedreich ataxia: magnetic resonance imaging volumetrics from the ENIGMA-Ataxia working group. Ann. Neurol. 90, 570–583 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Martínez, A. C. & Anciones, B. Central motor conduction to upper and lower limbs after magnetic stimulation of the brain and peripheral nerve abnormalities in 20 patients with Friedreich’s ataxia. Acta Neurol. Scand. 85, 323–326 (1992).

    Article 

    Google Scholar 

  • Caruso, G. et al. Friedreich’s ataxia: electrophysiological and histological findings. Acta Neurol. Scand. 67, 26–40 (1983).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rezende, T. J. R. et al. Progressive spinal cord degeneration in Friedreich’s ataxia: results from ENIGMA-Ataxia. Mov. Disord. 38, 45–56 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Joers, J. M. et al. Spinal cord magnetic resonance imaging and spectroscopy detect early-stage alterations and disease progression in Friedreich ataxia. Brain Commun. 4, fcac246 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rezende, T. J. R. et al. Developmental and neurodegenerative damage in Friedreich’s ataxia. Eur. J. Neurol. 26, 483–489 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ward, P. G. D. et al. Longitudinal evaluation of iron concentration and atrophy in the dentate nuclei in Friedreich ataxia. Mov. Disord. 34, 335–343 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Adanyeguh, I. M. et al. Brain MRI detects early-stage alterations and disease progression in Friedreich ataxia. Brain Commun. 5, fcad19 (2023).

    Article 

    Google Scholar 

  • Tsou, A. Y. et al. Mortality in Friedreich ataxia. J. Neurol. Sci. 307, 46–49 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Koeppen, A. H. et al. The pathogenesis of cardiomyopathy in Friedreich ataxia. PLoS ONE 10, e0116396 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Eigentler, A., Boesch, S., Schneider, R., Dechant, G. & Nat, R. Induced pluripotent stem cells from Friedreich ataxia patients fail to upregulate frataxin during in vitro differentiation to peripheral sensory neurons. Stem Cell Dev. 22, 3271–3282 (2013).

    Article 
    CAS 

    Google Scholar 

  • Dionisi, C. et al. Proprioceptors-enriched neuronal cultures from induced pluripotent stem cells from Friedreich ataxia patients show altered transcriptomic and proteomic profiles, abnormal neurite extension, and impaired electrophysiological properties. Brain Commun. 5, fcad007 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lai, J. I. et al. Transcriptional profiling of isogenic Friedreich ataxia neurons and effect of an HDAC inhibitor on disease signatures. J. Biol. Chem. 294, 1846–1859 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Boesch, S. & Indelicato, E. Experimental drugs for Friedrich’s ataxia: progress and setbacks in clinical trials. Expert. Opin. Invest. Drugs 32, 967–969 (2023).

    Article 
    CAS 

    Google Scholar 

  • Perdomini, M., Hick, A., Puccio, H. & Pook, M. A. Animal and cellular models of Friedreich ataxia. J. Neurochem. 126, 65–79 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rai, M. et al. HDAC inhibitors correct frataxin deficiency in a Friedreich ataxia mouse model. PLoS ONE 3, e1958 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Piguet, F. et al. Rapid and complete reversal of sensory ataxia by gene therapy in a novel model of Friedreich ataxia. Mol. Ther. 26, 1940–1952 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Perdomini, M. et al. Prevention and reversal of severe mitochondrial cardiomyopathy by gene therapy in a mouse model of Friedreich’s ataxia. Nat. Med. 20, 542–547 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Salami, C. O. et al. Stress-induced mouse model of the cardiac manifestations of Friedreich’s ataxia corrected by AAV-mediated gene therapy. Hum. Gene Ther. 31, 819–827 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sivakumar, A. & Cherqui, S. Advantages and limitations of gene therapy and gene editing for Friedreich’s ataxia. Front. Genome Ed. 4, 903139 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, Y. et al. Excision of expanded GAA repeats alleviates the molecular phenotype of Friedreich’s ataxia. Mol. Ther. 23, 1055–1065 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, J. et al. Excision of the expanded GAA repeats corrects cardiomyopathy phenotypes of iPSC-derived Friedreich’s ataxia cardiomyocytes. Stem Cell Res. 40, 101529 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mishra, P. et al. Gene editing improves endoplasmic reticulum-mitochondrial contacts and unfolded protein response in Friedreich’s ataxia iPSC-derived neurons. Front. Pharmacol. 15, 1323491 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mazzara, P. G. et al. Frataxin gene editing rescues Friedreich’s ataxia pathology in dorsal root ganglia organoid-derived sensory neurons. Nat. Commun. 11, 4178 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rocca, C. J. et al. Transplantation of wild-type mouse hematopoietic stem and progenitor cells ameliorates deficits in a mouse model of Friedreich’s ataxia. Sci. Transl. Med. 9, eaaj2347 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Reetz, K. et al. Progression characteristics of the European Friedreich’s Ataxia Consortium for Translational Studies (EFACTS): a 4-year cohort study. Lancet. Neurol. 20, 362–372 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Subramony, S. H. et al. Measuring Friedreich ataxia: interrater reliability of a neurologic rating scale. Neurology 64, 1261–1262 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schmitz-Hübsch, T. et al. Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology 66, 1717–1720 (2006).

    Article 
    PubMed 

    Google Scholar 

  • Rummey, C. et al. Psychometric properties of the Friedreich ataxia rating scale. Neurol. Genet. 5, 371 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lynch, D. R. et al. Safety and efficacy of omaveloxolone in Friedreich ataxia (MOXIe Study). Ann. Neurol. 89, 212–225 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lynch, D. R. et al. Propensity matched comparison of omaveloxolone treatment to Friedreich ataxia natural history data. Ann. Clin. Transl. Neurol. 11, 4–16 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Center for Drug Evaluation and Research. Clinical review(s). Application number: 216718Orig1s000. CDER https://www.accessdata.fda.gov/drugsatfda_docs/nda/2023/216718Orig1s000MedR.pdf (2023).

  • Gunther, K. & Lynch, D. R. Pharmacotherapeutic strategies for Friedreich ataxia: a review of the available data. Expert. Opin. Pharmacother. 25, 529–539 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Abeysekara, L. L. et al. A novel feature from instrumented utensils for clinical assessment of Friedreich ataxia. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2023, 1–4 (2023).

    PubMed 

    Google Scholar 

  • Corben, L. A. et al. Developing an instrumented measure of upper limb function in Friedreich ataxia. Cerebellum 20, 430–438 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Kadirvelu, B. et al. A wearable motion capture suit and machine learning predict disease progression in Friedreich’s ataxia. Nat. Med. 29, 86–94 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Németh, A. H. et al. Using smartphone sensors for ataxia trials: consensus guidance by the Ataxia Global Initiative Working Group on Digital-Motor Biomarkers. Cerebellum 23, 912–923 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Center for Drug Evaluation and Research. Patient-focused drug development: collecting comprehensive and representative input. FDA https://www.fda.gov/regulatory-information/search-fda-guidance-documents/patient-focused-drug-development-collecting-comprehensive-and-representative-input (2020).

  • Tai, G., Corben, L. A., Yiu, E. M. & Delatycki, M. B. A longitudinal study of the SF-36 version 2 in Friedreich ataxia. Acta Neurol. Scand. 136, 41–46 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Seabury, J. et al. Friedreich’s ataxia-health index: development and validation of a novel disease-specific patient-reported outcome measure. Neurol. Clin. Pract. 13, e200180 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Seabury, J. et al. Friedreich Ataxia Caregiver-Reported Health Index: development of a novel, disease-specific caregiver-reported outcome measure. Neurol. Clin. Pract. 14, e200303 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Payne, R. M. Cardiovascular research in Friedreich ataxia: unmet needs and opportunities. JACC Basic. Transl. Sci. 7, 1267–1283 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Weidemann, F. et al. The heart in Friedreich ataxia: definition of cardiomyopathy, disease severity, and correlation with neurological symptoms. Circulation 125, 1626–1634 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Takazaki, K. A. G. et al. Pre-clinical left ventricular myocardial remodeling in patients with Friedreich’s ataxia: a cardiac MRI study. PLoS ONE 16, e0246633 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hutchens, J. A., Johnson, T. R. & Payne, R. M. Myocardial perfusion reserve in children with Friedreich ataxia. Pediatr. Cardiol. 42, 1834–1840 (1234).

    Article 

    Google Scholar 

  • Pousset, F. et al. A 22-year follow-up study of long-term cardiac outcome and predictors of survival in Friedreich ataxia. JAMA Neurol. 72, 1334–1341 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Hewer, R. L. Study of fatal cases of Friedreich’s ataxia. Br. Med. J. 3, 649 (1968).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mejia, E. et al. Ectopic burden via Holter monitors in Friedreich’s ataxia. Pediatr. Neurol. 117, 29 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Weidemann, F. et al. The cardiomyopathy in Friedreich’s ataxia – new biomarker for staging cardiac involvement. Int. J. Cardiol. 194, 50–57 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Indelicato, E. & Bösch, S. Emerging therapeutics for the treatment of Friedreich’s ataxia. Expert Opin. Orphan Drugs 6, 57–67 (2018).

    Article 
    CAS 

    Google Scholar 

  • Libri, V. et al. Epigenetic and neurological effects and safety of high-dose nicotinamide in patients with Friedreich’s ataxia: an exploratory, open-label, dose-escalation study. Lancet 384, 504–513 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Boesch, S. & Indelicato, E. Erythropoietin and Friedreich ataxia: time for a reappraisal? Front. Neurosci. 13, 386 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gottesfeld, J. M. Molecular mechanisms and therapeutics for the GAA·TTC expansion disease Friedreich ataxia. Neurotherapeutics 16, 1032–1049 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Trantham, S. J. et al. Perspectives of the Friedreich ataxia community on gene therapy clinical trials. Mol. Ther. Methods Clin. Dev. 32, 101179 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Design Therapeutics. Design Therapeutics reports initial results from phase 1 multiple-ascending dose study of DT-216 for the treatment of Friedreich ataxia. Design Therapeutics https://investors.designtx.com/news-releases/news-release-details/design-therapeutics-reports-initial-results-phase-1-multiple (2023).

  • Clayton, R. et al. Safety, pharmacokinetics, and pharmacodynamics of nomlabofusp (CTI‐1601) in Friedreich’s ataxia. Ann. Clin. Transl. Neurol. 11, 540 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Larimar Therapeutics. Larimar Therapeutics: corporate deck (June 2024). Larimar Therapeutics https://investors.larimartx.com/static-files/6aaf56f2-3c60-4164-a7ea-865cdb0ae356 (2024).

  • Reisman, S. A. et al. Pharmacokinetics and pharmacodynamics of the novel NrF2 activator omaveloxolone in primates. Drug. Des. Devel. Ther. 13, 1259–1270 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Paupe, V. et al. Impaired nuclear Nrf2 translocation undermines the oxidative stress response in Friedreich ataxia. PLoS ONE 4, e4253 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Abeti, R., Baccaro, A., Esteras, N. & Giunti, P. Novel Nrf2-inducer prevents mitochondrial defects and oxidative stress in Friedreich’s ataxia models. Front. Cell. Neurosci. 12, 188 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lynch, D. R. et al. Efficacy of omaveloxolone in Friedreich’s ataxia: delayed-start analysis of the MOXIe extension. Mov. Disord. 38, 313–320 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pane, C. et al. Rationale and protocol of a double-blind, randomized, placebo-controlled trial to test the efficacy, safety, and tolerability of dimethyl fumarate in Friedreich ataxia (DMF-FA-201). Front. Neurosci. 17, 1260977 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Linker, R. A. et al. Fumaric acid esters exert neuroprotective effects in neuroinflammation via activation of the Nrf2 antioxidant pathway. Brain 134, 678–692 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Hayashi, G. et al. Dimethyl fumarate mediates Nrf2-dependent mitochondrial biogenesis in mice and humans. Hum. Mol. Genet. 26, 2864–2873 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jasoliya, M. et al. Dimethyl fumarate dosing in humans increases frataxin expression: a potential therapy for Friedreich’s ataxia. PLoS ONE 14, e0217776 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • La Rosa, P., Petrillo, S., Fiorenza, M. T., Bertini, E. S. & Piemonte, F. Ferroptosis in Friedreich’s ataxia: a metal-induced neurodegenerative disease. Biomolecules 10, 1551 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wenzel, S. E. et al. PEBP1 wardens ferroptosis by enabling lipoxygenase generation of lipid death signals. Cell 171, 628–641.e26 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Friedreich’s Ataxia Research Alliance. Drug development pipeline. FARA https://www.curefa.org/drug-development/ (2024).

  • Parkinson, M. H., Schulz, J. B. & Giunti, P. Co-enzyme Q10 and idebenone use in Friedreich’s ataxia. J. Neurochem. 126, 125–141 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Boddaert, N. et al. Selective iron chelation in Friedreich ataxia: biologic and clinical implications. Blood 110, 401–408 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pandolfo, M. et al. Deferiprone in Friedreich ataxia: a 6-month randomized controlled trial. Ann. Neurol. 76, 509–521 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Martelli, A. et al. Iron regulatory protein 1 sustains mitochondrial iron loading and function in frataxin deficiency. Cell Metab. 21, 311–323 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Grander, M. et al. Genetic determined iron starvation signature in Friedreich’s ataxia. Mov. Disord. 39, 1088–1098 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Harding, I. H. et al. Localized changes in dentate nucleus shape and magnetic susceptibility in Friedreich ataxia. Mov. Disord. 39, 1109–1118 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Patel, M. et al. Open-label pilot study of oral methylprednisolone for the treatment of patients with Friedreich ataxia. Muscle Nerve 60, 571–575 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yiu, E. M. et al. An open-label trial in Friedreich ataxia suggests clinical benefit with high-dose resveratrol, without effect on frataxin levels. J. Neurol. 262, 1344–1353 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lynch, D. R. et al. Randomized, double-blind, placebo-controlled study of interferon-γ 1b in Friedreich ataxia. Ann. Clin. Transl. Neurol. 6, 546–553 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lynch, D. R. et al. Double blind trial of a deuterated form of linoleic acid (RT001) in Friedreich ataxia. J. Neurol. 270, 1615–1623 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Metz, G. et al. Rating disease progression of Friedreich’s ataxia by the International Cooperative Ataxia Rating Scale: analysis of a 603-patient database. Brain 136, 259 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pandolfo, M. et al. Efficacy and safety of leriglitazone in patients with Friedreich ataxia: a phase 2 double-blind, randomized controlled trial (FRAMES). Neurol. Genet. 8, e200034 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Marmolino, D. et al. PGC-1α down-regulation affects the antioxidant response in Friedreich’s ataxia. PLoS ONE 5, e10025 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rodríguez-Pascau, L. et al. PPAR gamma agonist leriglitazone improves frataxin-loss impairments in cellular and animal models of Friedreich ataxia. Neurobiol. Dis. 148, 105162 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Chevis, C. F. et al. Spinal cord atrophy correlates with disability in Friedreich’s ataxia. Cerebellum 12, 43–47 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Dogan, I. et al. Structural characteristics of the central nervous system in Friedreich ataxia: an in vivo spinal cord and brain MRI study. J. Neurol. Neurosurg. Psychiatry 90, 615–617 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Georgiou-Karistianis, N. et al. A natural history study to track brain and spinal cord changes in individuals with Friedreich’s ataxia: TRACK-FA study protocol. PLoS ONE 17, e0269649 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lynch, D. R., Perlman, S. L. & Meier, T. A phase 3, double-blind, placebo-controlled trial of idebenone in Friedreich ataxia. Arch. Neurol. 67, 941–947 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Rummey, C., Perlman, S., Subramony, S. H., Farmer, J. & Lynch, D. R. Evaluating mFARS in pediatric Friedreich’s ataxia: insights from the FACHILD study. Ann. Clin. Transl. Neurol. 11, 1290–1300 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Roche, B. et al. Test-retest reliability of an instrumented electronic walkway system (GAITRite) for the measurement of spatio-temporal gait parameters in young patients with Friedreich’s ataxia. Gait Posture 66, 45–50 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Park, S. Y. et al. Cardiac, skeletal, and smooth muscle mitochondrial respiration: are all mitochondria created equal? Am. J. Physiol. Hear. Circ. Physiol. 307, H346 (2014).

    Article 
    CAS 

    Google Scholar 

  • Vorgerd, M. et al. Mitochondrial impairment of human muscle in Friedreich ataxia in vivo. Neuromuscul. Disord. 10, 430–435 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nachbauer, W. et al. Bioenergetics of the calf muscle in Friedreich ataxia patients measured by 31P-MRS before and after treatment with recombinant human erythropoietin. PLoS ONE 8, e69229 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sival, D. A. et al. In children with Friedreich ataxia, muscle and ataxia parameters are associated. Dev. Med. Child. Neurol. 53, 529–534 (2011).

    Article 
    PubMed 

    Google Scholar 

  • Nachbauer, W. et al. Skeletal muscle involvement in Friedreich ataxia and potential effects of recombinant human erythropoietin administration on muscle regeneration and neovascularization. J. Neuropathol. Exp. Neurol. 71, 708–715 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 




  • Source link

    Add a comment

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Keep Up to Date with the Most Important News

    By pressing the Subscribe button, you confirm that you have read and are agreeing to our Privacy Policy and Terms of Use