High abundance of lactobacilli in the gut microbiome of honey bees during winter

High abundance of lactobacilli in the gut microbiome of honey bees during winter High abundance of lactobacilli in the gut microbiome of honey bees during winter


  • Genersch, E. Honey bee pathology: Current threats to honey bees and beekeeping. Appl. Microbiol. Biotechnol. 87, 87–97 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Abou-Shaara, H. F., Owayss, A. A., Ibrahim, Y. Y. & Basuny, N. K. A review of impacts of temperature and relative humidity on various activities of honey bees. Insect. Soc. 64, 455–463 (2017).

    Article 

    Google Scholar 

  • Giannini, T. C. et al. Crop pollinators in Brazil: A review of reported interactions. Apidologie 46, 209–223 (2015).

    Article 
    MATH 

    Google Scholar 

  • Hristov, P., Shumkova, R., Palova, N. & Neov, B. Factors associated with honey bee colony losses: A mini-review. Vet. Sci. 7, 166 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Szentgyörgyi, H., Czekońska, K. & Tofilski, A. Honey bees are larger and live longer after developing at low temperature. J. Therm. Biol. 78, 219–226 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Butolo, N. P., Azevedo, P., Alencar, L. D., Malaspina, O. & Nocelli, R. C. F. Impact of low temperatures on the immune system of honeybees. J. Therm. Biol. 101, 103082 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Wang, Q. et al. Low-temperature stress during capped brood stage increases pupal mortality, misorientation and adult mortality in honey bees. PLoS One 11, e0154547 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Steinhauer, N., vanEngelsdorp, D. & Saegerman, C. Prioritizing changes in management practices associated with reduced winter honey bee colony losses for US beekeepers. Sci. Total. Environ. 753, 141629 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Aurori, C. M. et al. What is the main driver of ageing in long-lived winter honeybees: Antioxidant enzymes, innate immunity, or vitellogenin?. J. Gerontol. – Ser. A. Biol. Sci. Med. Sci. 69, 633–639 (2014).

    Article 

    Google Scholar 

  • Stabentheiner, A., Pressl, H., Papst, T., Hrassnigg, N. & Crailsheim, K. Endothermic heat production in honeybee winter clusters. J. Exp. Biol. 206, 353–358 (2003).

    Article 
    PubMed 

    Google Scholar 

  • Degrandi-Hoffman, G., Graham, H., Ahumada, F., Smart, M. & Ziolkowski, N. The economics of honey bee (Hymenoptera: Apidae) management and overwintering strategies for colonies used to pollinate almonds. J. Econ. Entomol. 112, 2524–2533 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Owens, C. D., States, U. & Service, A. R. The thermology of wintering honey bee colonies. 171857 Preprint at (1971).

  • Meikle, W. G., Corby-Harris, V., Ricigliano, V., Snyder, L. & Weiss, M. Cold storage as part of a Varroa management strategy: Effects on honey bee colony performance, mite levels and stress biomarkers. Sci. Rep. 13(1), 15 (2023).

    Article 

    Google Scholar 

  • Coulibaly, K. A. S., Majeed, M. Z., Sayed, S. & Yeo, K. Simulated climate warming influenced colony microclimatic conditions and gut bacterial abundance of honeybee subspecies apis mellifera ligustica and a mellifera sinisxinyuan. J. Apic. Sci. 66(15), 27 (2022).

    Google Scholar 

  • Zhang, Y. et al. Mediating a host cell signaling pathway linked to overwinter mortality offers a promising therapeutic approach for improving bee health. J. Adv. Res. 53, 99–114 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Xu, K., Niu, Q., Zhao, H., Du, Y. & Jiang, Y. Transcriptomic analysis to uncover genes affecting cold resistance in the Chinese honey bee (Apis cerana cerana). PLoS One 12, e0179922 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Raymann, K. & Moran, N. A. The role of the gut microbiome in health and disease of adult honey bee workers. Curr.Opin. Insect Sci. Preprint at https://doi.org/10.1016/j.cois.2018.02.012 (2018).

  • Zheng, H., Steele, M. I., Leonard, S. P., Motta, E. V. S. & Moran, N. A. Honey bees as models for gut microbiota research. Lab Anim. (NY) 47, 317–325 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Engel, P. et al. The bee microbiome: Impact on bee health and model for evolution and ecology of host-microbe interactions. Am. Soc. Microbiol. https://doi.org/10.1128/mBio.02164-15 (2016).

    Article 
    MATH 

    Google Scholar 

  • Kwong, W. K. & Moran, N. A. Gut microbial communities of social bees. Nat. Rev. Microbiol. 14, 374 (2016).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Martinson, V. G., Moy, J. & Moran, N. A. Establishment of characteristic gut bacteria during development of the honeybee worker. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.07810-11 (2012).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Bonilla-Rosso, G. & Engel, P. Functional roles and metabolic niches in the honey bee gut microbiota. Curr. Opin. Microbiol. 43, 69–76 (2018).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Engel, P. & Moran, N. A. Functional and evolutionary insights into the simple yet specific gut microbiota of the honey bee from metagenomic analysis. Gut. Microb. 4, 60–65 (2013).

    Article 
    MATH 

    Google Scholar 

  • Engel, P. & Moran, N. A. The gut microbiota of insects – diversity in structure and function. FEMS Microbiol. Rev. 37, 699–735 (2013).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Ludvigsen, J. et al. Shifts in the midgut/pyloric microbiota composition within a honey bee apiary throughout a season. Microb. Environ. 30, 235–244 (2015).

    Article 
    MATH 

    Google Scholar 

  • Almeida, E. L. et al. Geographical and seasonal analysis of the honeybee microbiome. Microb. Ecol. 85, 765–778 (2023).

    Article 
    ADS 
    PubMed 
    MATH 

    Google Scholar 

  • Castelli, L., Branchiccela, B., Romero, H., Zunino, P. & Antúnez, K. Seasonal dynamics of the honey bee gut microbiota in colonies under subtropical climate: Seasonal dynamics of honey bee gut microbiota. Microb. Ecol. 83, 492–500 (2022).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Kešnerová, L. et al. Gut microbiota structure differs between honeybees in winter and summer. ISME J. 14(801), 814 (2019).

    MATH 

    Google Scholar 

  • Hammer, T. J., Le, E., Moran, N. A. & Hammer, T. J. Thermal niches of specialized gut symbionts: the case of social bees. Proc. R. Soc. B. 288, 1944 (2021).

    Article 
    MATH 

    Google Scholar 

  • Russell, K. A. & McFrederick, Q. S. Elevated temperature may affect nectar microbes, nectar sugars, and bumble bee foraging preference. Microb. Ecol. 84, 473–482 (2022).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Ellegaard, K. M., Suenami, S., Miyazaki, R. & Engel, P. Vast differences in strain-level diversity in the gut microbiota of two closely related honey bee species. Curr. Biol. 30, 2520-2531.e7 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, J. et al. Honey bee genetics shape the strain-level structure of gut microbiota in social transmission. Microbiome 9, 1–19 (2021).

    Article 
    MATH 

    Google Scholar 

  • Su, Q. et al. Significant compositional and functional variation reveals the patterns of gut microbiota evolution among the widespread Asian honeybee populations. Front. Microbiol. 13, 934459 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, Y. et al. Genetic divergence and functional convergence of gut bacteria between the Eastern honey bee APIS cerana and the Western honey bee Apis mellifera. J. Adv. Res. 37, 19–31 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Khan, K. A. et al. Gut microbial diversity in Apis cerana indica and Apis florea colonies: A comparative study. Front. Vet. Sci. 10, 1149876 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Maes, P. W., Rodrigues, P. A. P., Oliver, R., Mott, B. M. & Anderson, K. E. Diet-related gut bacterial dysbiosis correlates with impaired development, increased mortality and Nosema disease in the honeybee (Apis mellifera). Mol. Ecol. 25, 5439–5450 (2016).

    Article 
    PubMed 

    Google Scholar 

  • McFrederick, Q. S. & Rehan, S. M. Characterization of pollen and bacterial community composition in brood provisions of a small carpenter bee. Mol. Ecol. 25, 2302–2311 (2016).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Russell, K. A. & McFrederick, Q. S. Floral nectar microbial communities exhibit seasonal shifts associated with extreme heat: Potential implications for climate change and plant-pollinator interactions. Front. Microbiol. 13, 3107 (2022).

    Article 
    MATH 

    Google Scholar 

  • Bates, D., Mächler, M., Zurich, E., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. https://doi.org/10.18637/jss.v067.i01 (2015).

    Article 

    Google Scholar 

  • Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: Tests in Linear Mixed Effects Models. J. Stat. Softw. 82, 1–26 (2017).

    Article 
    MATH 

    Google Scholar 

  • R core team. R: The R Project for Statistical Computing. https://www.r-project.org/ (2022).

  • Harrison, X. A. et al. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ https://doi.org/10.7717/peerj.4794 (2018).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Meurisse, N., Pawson, S. M. & Somchit, C. Bark beetles on pine logs: forecasting winter colonisation dynamics based on trap catches and temperature records. J. Pest. Sci. 2004(94), 1357–1373 (2021).

    Article 

    Google Scholar 

  • Hartig. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. https://cran.r-project.org/web/packages/DHARMa/vignettes/DHARMa.html (2018).

  • Lüdecke, D. ggeffects: Tidy data frames of marginal effects from regression models. J. Open Sour. Softw. 3, 772 (2018).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Russell, V. Lenth. Package ‘emmeans’ Type Package Title Estimated Marginal Means, aka Least-Squares Means. Am. Stat. https://doi.org/10.1080/00031305.1980.10483031 (2024).

    Article 

    Google Scholar 

  • Bleau, N., Bouslama, S., Giovenazzo, P. & Derome, N. Dynamics of the honeybee (Apis mellifera) gut microbiota throughout the overwintering period in Canada. Microorganisms 8, 1146 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bustin, S. A. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J. Mol. Endocrinol. 29 23 39 Preprint at https://doi.org/10.1677/jme.0.0290023 (2002).

  • Zheng, J. et al. A taxonomic note on the genus Lactobacillus: description of 23 novel genera, emended description of the genus Lactobacillus beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 70, 2782–2858 (2020).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Olofsson, T. C., Alsterfjord, M., Nilson, B., Butler, È. & Vásquez, A. Lactobacillus apinorum sp. nov., Lactobacillus mellifer sp. nov., Lactobacillus mellis sp. nov., Lactobacillus melliventris sp. nov., Lactobacillus kimbladii sp. nov., Lactobacillus helsingborgensis sp. nov. and lactobacillus kullabergensis sp. nov., isolated from the honey stomach of the honeybee Apis mellifera. Int. J. Syst. Evol. Microbiol. 64, 3109–3119 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ahn, J. H. et al. Pyrosequencing analysis of the bacterial communities in the guts of honey bees Apis cerana and Apis mellifera in Korea. J. Microbiol. 50, 735–745 (2012).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Heo, J., Kim, S. J., Kim, J. S., Hong, S. B. & Kwon, S. W. Comparative genomics of Lactobacillus species as bee symbionts and description of Lactobacillus bombintestini sp. nov., isolated from the gut of Bombus ignitus. J. Microbiol. 58(445), 455 (2020).

    MATH 

    Google Scholar 

  • Martinson, V. G. et al. A simple and distinctive microbiota associated with honey bees and bumble bees. Mol. Ecol. 20, 619–628 (2011).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Kang, J. P. et al. Bombilactobacillus apium sp. nov., isolated from the gut of honeybee (Apis cerana) Arch. Microbiol. 203(2193), 2198 (2021).

    MATH 

    Google Scholar 

  • Zhang, Z. et al. (2022) Honeybee gut Lactobacillus modulates host learning and memory behaviors via regulating tryptophan metabolism. Nat. Commun. 13(1), 13 (2022).

    ADS 

    Google Scholar 

  • Li, T. T., Liu, D. D., Fu, M. L. & Gu, C. T. Proposal of lactobacillus kosoi chiou et al. 2018 as a later heterotypic synonym of lactobacillus micheneri mcfrederick et al. 2018, elevation of lactobacillus plantarum subsp. argentoratensis to the species level as lactobacillus argentoratensis sp. nov., and lactobacillus zhaodongensis sp. nov., isolated from traditional chinese pickle and the intestinal tract of a honey bee (apis mellifera). Int. J. Syst. Evol. Microbiol. 70, 3123–3133 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Han, B. et al. Lactobacillus Firm-5-derived succinate prevents honeybees from having diabetes-like symptoms. Proc. Natl. Acad. Sci. U S A 121, e2405410121 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Engel, P., Martinson, V. G. & Moran, N. A. Functional diversity within the simple gut microbiota of the honey bee. Proc. Natl. Acad. Sci. U S A 109, 11002–11007 (2012).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brar, G. et al. Environmentally acquired gut-associated bacteria are not critical for growth and survival in a solitary bee Megachile rotundata. Appl. Environ. Microbiol. https://doi.org/10.1128/aem.02076-23 (2024).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • McFrederick, Q. S., Mueller, U. G. & James, R. R. Interactions between fungi and bacteria influence microbial community structure in the Megachile rotundata larval gut. Proc. R. Soc. B: Biol. Sci. https://doi.org/10.1098/rspb.2013.2653 (2014).

    Article 

    Google Scholar 

  • Vásquez, A. et al. Symbionts as major modulators of insect health: lactic acid bacteria and honeybees. PLoS One 7, e33188 (2012).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Forsgren, E., Olofsson, T. C., Vásquez, A. & Fries, I. Novel lactic acid bacteria inhibiting paenibacillus larvae in honey bee larvae. Apidologie 41(1), 99–108 (2010).

    Article 

    Google Scholar 

  • Moharrami, M., Mojgani, N., Bagheri, M. & Toutiaee, S. role of honey bee gut microbiota in the control of American foulbrood and european foulbrood diseases. Arch. Razi. Inst. 77, 1331–1339 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Daisley, B. A. et al. Lactobacillus spp. attenuate antibiotic-induced immune and microbiota dysregulation in honey bees. Commun. Biol. 3, 1–13 (2020).

    Article 

    Google Scholar 

  • Forsgren, E., Locke, B., Sircoulomb, F. & Schäfer, M. O. Bacterial diseases in honeybees. Curr. Clin. Microbiol. Rep. 5, 18–25 (2018).

    Article 

    Google Scholar 

  • Lang, H. et al. Specific strains of honeybee gut lactobacillus stimulate host immune system to protect against pathogenic hafnia alvei. Microbiol. Spectr. https://doi.org/10.1128/spectrum.01896-21 (2022).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Kešnerová, L. et al. Disentangling metabolic functions of bacteria in the honey bee gut. PLoS Biol 15, e2003467 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yoshiyama, M. & Kimura, K. Bacteria in the gut of Japanese honeybee, Apis cerana japonica, and their antagonistic effect against Paenibacillus larvae, the causal agent of American foulbrood. J. Invertebr. Pathol. 102, 91–96 (2009).

    Article 
    PubMed 

    Google Scholar 

  • Sabaté, D. C., Carrillo, L. & Carina Audisio, M. Inhibition of Paenibacillus larvae and Ascosphaera apis by Bacillus subtilis isolated from honeybee gut and honey samples. Res. Microbiol. 160(193), 199 (2009).

    Google Scholar 

  • Den Besten, G. et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid. Res. 54, 2325–2340 (2013).

    Article 
    MATH 

    Google Scholar 

  • Zheng, H., Steele, M. I., Leonard, S. P., Motta, E. V. S. & Moran, N. A. Honey bees as models for gut microbiota research. Lab. Anim. Preprint at https://doi.org/10.1038/s41684-018-0173-x (2018).

  • Gaggìa, F. et al. Environment or genetic isolation? An atypical intestinal microbiota in the Maltese honey bee Apis mellifera spp. ruttneri. Front. Microbiol. 14, 1127717 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ge, Y., Jing, Z., Diao, Q., He, J. Z. & Liub, Y. J. Host species and geography differentiate honeybee gut bacterial communities by changing the relative contribution of community assembly processes. mBio https://doi.org/10.1128/mBio.00751-21 (2021).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Hroncova, Z. et al. Variation in honey bee gut microbial diversity affected by ontogenetic stage age and geographic location. PLoS One 10, e0118707 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, C., Tang, M., Li, X. & Zhou, X. Community Dynamics in Structure and Function of Honey Bee Gut Bacteria in Response to Winter Dietary Shift. mBio https://doi.org/10.1128/mbio.01131-22 (2022).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Carlini, D. B., Winslow, S. K., Cloppenborg-Schmidt, K. & Baines, J. F. Quantitative microbiome profiling of honey bee bee (Apis mellifera) guts is predictive of winter colony loss in northern Virginia (USA). Sci. Rep. 14(1), 12 (2024).

    Article 

    Google Scholar 

  • Jones, J. C. et al. Gut microbiota composition is associated with environmental landscape in honey bees. Ecol. Evol. 8, 441–451 (2018).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Donkersley, P., Rhodes, G., Pickup, R. W., Jones, K. C. & Wilson, K. Bacterial communities associated with honeybee food stores are correlated with land use. Ecol. Evol. 8, 4743–4756 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rothman, J. A., Carroll, M. J., Meikle, W. G., Anderson, K. E. & McFrederick, Q. S. Longitudinal Effects of Supplemental Forage on the Honey Bee (Apis mellifera) Microbiota and Inter- and Intra-Colony Variability. Microb. Ecol. 76, 814–824 (2018).

    Article 
    ADS 
    PubMed 

    Google Scholar 

  • Liu, P. et al. Overwintering honeybees maintained dynamic and stable intestinal bacteria. Sci Rep. 11(1), 10 (2021).

    Google Scholar 

  • D’Alvise, P. et al. The impact of winter feed type on intestinal microbiota and parasites in honey bees. Apidologie 49, 252–264 (2018).

    Article 

    Google Scholar 

  • Kapheim, K. M. et al. Caste-specific differences in hindgut microbial communities of honey bees (Apis mellifera). PLoS One 10, e0123911 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Papp, M. et al. Natural diversity of the honey bee (Apis mellifera) gut bacteriome in various climatic and seasonal states. PLoS One 17, e0273844 (2022).

    Article 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Pattabhiramaiah, M., Brueckner, D., Witzel, K. P., Junier, P. & Reddy, M. S. Prevalence of wolbachia in the European honeybee, apis mellifera carnica. World Appl. Sci. J. 15, 1503–1506 (2011).

    Google Scholar 

  • Hoy, M. A., Jeyaprakash, A., Alvarez, J. M. & Allsopp, M. H. Wolbachia is present in Apis mellifera capensis, A. m. scutellata, and their hybrid in Southern Africa. Apidologie 34(53), 60 (2003).

    Google Scholar 




  • Source link

    Add a comment

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Keep Up to Date with the Most Important News

    By pressing the Subscribe button, you confirm that you have read and are agreeing to our Privacy Policy and Terms of Use